
 
 
 
 
 
 
 
 
 

1. Fundamentals 
 

 Relaxation processes are a very common class of phenomena taking place in nature. They 
can be generally described as a transition of a macroscopic system to an equilibrium state. (We 
understand here the equilibrium state as the state of a minimum thermodynamic potential). These 
processes are irreversible, as they are accompanied by energy dissipation – i.e. conversion of part of 
energy into heat. 
 Relaxation processes cover both thermodynamic phenomena – heating up and cooling down of 
bodies, gas expansion and radioactive decay, as well as charging and discharging of capacitors in 
electric RC circuits. 

 All the mentioned here phenomena have one feature in common: the process speed 









dt

dy
 is 

proportional to )(ty  deviation from equilibrium state at a given moment in time. This means that at 

the beginning of the relaxation process the change of describing it parameter is dramatic and it 
decreases to zero as time passes to infinity.  

These phenomena are mathematically described with: 
- decreasing exponential functions (energy dissipation processes – the system is undisturbed at 

equilibrium state and 0ey ) or 
teyty  0)(  (fig.1 ) or 

- complementary exponential functions (local energy accumulation, at the initial moment the system 

energy equals to 0) or )1()( t

e eyty   (fig. 2). 

In the above formulas y(t) is a momentaneous value of a physical parameter describing a given 
process, y0 –its initial value, ye – final value, e – base of a natural logarithm (e = 2,72), λ – coefficient 
of proportionality of a physical unit that is reciprocal of time. (Derivation of the above relations can 
be found in Appendix 1 at the end of this manual.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1. Reaching the equilibrium state through relaxation with decrease of y value. 

  - relaxation time, y0 – initial value of a changing parameter. 
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 Fig. 2. Reaching the equilibrium state through relaxation with increase of y value. 

  - relaxation time, ye – end value of a changing parameter. 
 
 

 Instead of λ coefficient, one uses 



1

  parameter which is represented in time domain. This 

quantity is called relaxation time. The above equations can be then re-written as: 



t

eyty


 0)(            (1) 

)1()( 

t

e eyty


           (2) 

 

The interpretation of τ value is very simple: relaxation time is the time t= after which observed 
parameter will decrease e times. The advantage of using such parameter as a process descriptor is 
independence of τ value of the choice of the observation moment. The τ itself characterizes the 
speed of the progress of relaxation process. 

Both processes of forced energy increase and its dissipation can occur alternately if during 
the energy transfer from the environment to the system, the system reaches the unstable 
equilibrium state. At this moment the system can spontaneously dissipate the aggregated energy 
many times faster than it is transferred. In case of a continuous energy supply, its changes will 
take place periodically as each time the unstable equilibrium is reached the energy obtained will be 
dissipated. The oscillations called relaxation oscillations will be created in the system. These 
oscillations proceed in a completely different way than harmonic oscillations. 

 
 

2. Experiment 
 

In order to observe relaxation process of energy increase in a system, dissipation of energy 
and creation of relaxation oscillations, we are going to analyze electric circuit RC (consisting of 
resistors and capacitors). The circuits will be additionally extended with a neon lamp that can open 
or close a circuit depending on the voltage applied to its terminals. 

A direct current (DC) cannot flow through a circuit containing a resistor R and a capacitor C in 
series. In such circuits, equipped additionally with an ammeter (fig. 3 and 4), once they are closed 
we can only notice a briefly lasting capacitor charge/discharge current. K switches are used for 
closing circuits and discharging capacitors before the next measurement. 

We use Kirchhoff's voltage law (KVL or Kirchhoff's second law) telling that the directed sum 
of the electrical potential differences (voltage) around any closed network is zero. 
 
 

y 
2 

y 1 

y e 

y(t) 

t  

y   0,37 y 2 1 

















t

e eyty 1)(



 

Relaxation processes in electrical circuits 3 

2.1. Charging a capacitor in the RC circuit  
 
Closing the switch K in the circuit presented in fig. 3 causes flow of a direct current of 

a maximum value Io=/R where ε is the electromotive force of the power supply. After the K switch 
is open, the capacitor C is being charged – the charge q is being collected on the capacitor’s plates. 
This leads to the voltage increase (UC) on the capacitor and to the simultaneous decrease of the 
charging current. 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Capacitor charging circuit. 
 

Kirchhoff's voltage law for the capacitor charging circuit can be written as: 
 

C

q
IR   ,           (3a) 

 
where IR denotes a momentaneous potential drop (voltage) on the R resistor, and q/C – the 
momentaneous potential difference on the capacitor’s plates. Taking into consideration that current 
I=dq/dt, we obtain a differential equation of one variable q which can be written as: 
 

C

q
R

dt

dq
  .          (3b) 

 
Through some elementary transformations leading to separation of variables q and t (see Appendix 
1), we obtain the last equation in the form: 

 

dt
RCCq

dq 1



.          (3c) 

 
After integrating both sides and taking into consideration initial conditions q(t=0)=0, giving the value 
of integrating constant A=-εC, we obtain solution for a dependence of the charge q with respect to 
time during the process of charging the capacitor as a complementary exponential curve (compare 
with equation (2)): 
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According to the above formula, the charge increases exponentially from the value q = 0 to the value 
qe = εC. The voltage changes in analogical way. This conclusion results directly from the relation 
between charge and voltage on the capacitor plates Uc. 
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The charging current flowing after the circuit is closed, as a derivative of charge with respect to 
time is described with the exponential formula: 
 

RC

t

e
Rdt

dq
tI






)(  .          (5) 

 
2.2. Discharging a capacitor in the RC circuit 

 
A circuit in which we are going to analyze discharging characteristics is shown in fig. 4. 

 
 
 
 
 
 
 
 
 
 
 

Fig.4 Capacitor discharge circuit. 
 

Capacitor C that has already been charged to the voltage ε is being discharged through the 
resistor R. When any electromotive force is absent in discharge circuit, the Kirchhoff's voltage law 
can be written as: 
 

0
C

q
IR  ,              (6a) 

 
where, like previously, IR expresses drop of potential  on the resistor, and q/C is a momentaneous 
potential difference on the capacitor’s plates. Taking into consideration the relation between 
current and charge, we obtain a differential equation of one variable q which can be written as: 
 

0
C

q
R

dt

dq
 ,          (6b) 

 

then after separating the variables we obtain an analogical formula to (3c) when  = 0: 
 

dt
RCq

dq 1
  ,          (6c) 

 
which is a typical formula for processes of relaxation dissipation. Its solution describes 
a momentaneous value of charge q(t) on the capacitor’s plates (compare equations (4) and (5)): 
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Based on the relation between the voltage and the charge on capacitor plates we obtain a time 
dependence of voltage changes in discharge process: 
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additionally, after differentiating formula (7), we obtain a time dependence of discharge current: 
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RC
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.        (9) 

 
Comparison of exponents in equations (7) and (9) with exponents in equations (1) and (2) 

indicates that for analyzed circuits λ = 1/RC, and relaxation time τ = RC, where R is a resistance 
and C capacitance in the circuit. 
 
2.3. Relaxation oscillations in RC circuits 

Process of obtaining energy from environment by a system can be interrupted if the reached 
state is the state of instable equilibrium and the obtained energy can be dissipated rapidly. If the 
process of energy supplying lasts continuously, the aggregation of energy will be continued until the 
moment of reaching the state of instable equilibrium and energy dissipation. 

In the system shown in fig. 5, the process of energy aggregation and dissipation will 
periodically take place which is called relaxation oscillations. In the serial RC circuit “looping” 
capacitor charging and discharging is obtained through connection of neon lamp (fig. 5a) to the 
capacitor plates. For voltages lower than ignition (or striking) voltage Ui the lamp practically does 
not conduct any current (resistance near to infinity) and does not disturb capacitor charging 
process by the power supply (fig. 5b). As soon as the charge q is aggregated on capacitor’s plates for 
which the potential voltage is Ui, the avalanche ionization of the gas inside the bulb takes place and 
the conductivity of the bulb increases by several orders of magnitude. The further increase of 
voltage between the capacitor plates is interrupted as a result of short circuit its plate and the 
capacitor discharge process takes place (fig .5c). We have to remember that the discharge process 
in being continued (the capacitor WASN’T disconnected from the power supply), but the discharging 
current is higher than the charging current. Such a situation can only take place if the neon lamp 
resistance in conduction state Rn is LOWER than the serial resistance R. 
 
 
 
 
 
 
 
 
 

Fig. 5 Circuit for relaxation oscillation analysis. 
 

Neon lamp resistance RN in conduction state is many times lower that the resistance of 
charging circuit, so the speed of energy dissipation exceeds its aggregation speed. A specific feature 
of neon lamp is maintenance of avalanche ionization despite voltage decrease and its definitive 
decline only when voltage is lower by dozen or so volts which is called extinction voltage Ue.  

At this moment, the neon lamp resistance RN increases once again to the value near to infinity 
and the current in the branch with the neon lamp stops flowing. In this system, there are periodic 
capacitor charging – energy aggregation (in circuit shown in fig. 5b) and discharging – energy 
dissipation (in circuit shown in fig. 5c). Voltage on capacitor plates increases and decreases 
exponentially, oscillating between the values Ui and Ue (compare fig. 6a and 6b). The changes of 
voltage during the charging process are described with a complementary exponential function 

)1( RC

t

C eU


  (see fig. 4a).  

The capacitor is being charged in t1 time: from voltage Uc(t) = Ue  to Uc(t + t1) = Ui. Equations for the 
boundary values can be written as: 
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After dividing both equations side by side and logarithmizing we obtain a formula for capacitor 
charging time t1: 
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Voltage changes during the discharging process (8) are described with exponential equation 
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 0)(  and they progress from voltage Uc(t) = Ui  to voltage Uc(t + t2) = Ue , related with a 
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Thus the discharging time t2 is: 
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The period of relaxation oscillations T is a sum of charging t1 and discharging times t2: 

 
T = t1 + t2            (14) 
 
Fig. 6b shows voltage changes U(t) on capacitor plates with respect to time, created 

graphically through tiling respective sections of capacitor charging and discharging curves Uc(t) 
(fig. 6a). Thanks to gas glowing phenomenon, we can observe this process directly and measure the 
relaxation oscillation period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Rys.6. Changes of capacitor voltage during the relaxation oscillations. 

a) changes of capacitor voltage: charging curve (I), discharging curve (II) in a circuit 
without a neon lamp; 
b) changes of capacitor voltage during the relaxation oscillations. 

Ui – neon lamp ignition voltage, Ue – neon lamp extinction voltage,  - power supply 
voltage, t1 – capacitor charging time, t2 – capacitor discharging time. 
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3. Measurements  
 

The number of measurements depends on the time assigned to the experiment and on the 
supervisor’s request. A stopwatch is needed to perform the measurements. 
 
3.1 Capacitor charging (discharging) process analysis  

 
The circuits used for analysis of capacitor charging or discharging process are built based on 

diagrams shown in fig. 3 or fig. 4. The switch K (fig. 3) connected to capacitor plates is used for its 
discharging before the next measurement and it should be open during the measurement. Switch K in 
fig. 4 has to be shortcut for a brief moment to charge the capacitor and then it has to open to begin 
the discharging process. 

Use the table templates shown below (table 1), to report capacitor charging (discharging) 
currents read every 5 seconds. Stop the measurements after the time t=3τ when their value falls to 
about 5% of the initial value. 
 
Table 1  

 
C[μF]       

 
R[kΩ] 

     t(s) 
 

I0 (A) 

 
0 

 
5 

 
10 

 
15 

 
20 

 
25... 

  

 
 
C1= 

 
R1 = 

         

 
R2 = 

         

 
 
C2 = 

 
R1 = 

         

 
R2 = 

         

 
 
3.2 Finding relaxation oscillations period 

 
As we remember, thanks to the phenomenon of neon gas glowing in a neon lamp 

accompanying avalanche ionization, we can observe this process directly and measure oscillation 
period. 

Relaxation oscillation period T is a sum of capacitor charging t1 and discharging t2 times,  
T = t1 + t2. The relaxation time of discharging circuit τ = RNC is very short due to low resistance of 
the neon lamp in conduction state (avalanche ionization) RN. This is why observation of oscillations 
with stopwatch in hand requires, due to limited speed of human perception, extension of period 
through extension charging time requiring high values of resistance R in charging circuit. As a result, 
due to the above condition, the time ratio is  

1
)/ln(

)]/()ln[(
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


ie

ie

N UU

UU

R

R

t

t 
 and relaxation oscillation period T t1. On the other hand, 

observation of oscillations on the oscilloscope’s screen requires quick waveform due to difficulties in 
synchronization of slow waveform. For this reason, a resistor R of a resistance comparable to RN has 
to be used in the circuit. Thus the oscillation period in this circuit will be equal to T = t1 + t2. To 
calculate t1 and t2 times, neon lamp ignition Ui and extinction Ue voltages are required as well as 

power supply voltage  (see formulas (11), (13)). 
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3.3. Measurement of ignition Ui and extinction Ue voltages of neon lamp 
 
1. Build a circuit shown in fig. 7. 
2. Turn the voltage knob on the power supply very slowly to increase the voltage till the moment 

the lamp ignites. 
3. Write down the highest voltage read BEFORE the ignition, Ui (when the lamp ignites, the voltage 

falls by a dozen or so volts to the so-called maintaining voltage). 
4. Reduce the voltage and write down Ue voltage at each the gas stops glowing. Repeat the 

measurement several times, and write down the results in table 2. Calculate their average 
values. Consider the uncertainties type A and B. 

 
 
 
 
 
 
 

 
Fig. 7. Circuit for measurement of neon lamp ignition and extinction voltages. 

 
Table 2. 

           n 
 
U[V] 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
... 

 
... 

 
Uav 

Ui          

Ue          

 
 
3.4. Analysis of oscillation period dependence with respect to resistance R and capacitance C 
 
1. Build a circuit shown in fig. 8. 
 
 
 
 
 
 
 
 

Fig. 8. RC circuit with a neon lamp for observation of relaxation oscillations. 
 
2. Set such a voltage U, to see neon lamp flashing for each measured resistance R (the power supply 

voltage has to remain constant during the measurement). 
3. Measure at least twice time of n=20 flashes of neon lamp for various subsequent R values. The 

measurement result and the calculated oscillation period have to be written in Table 3. 
4. Estimate the uncertainties R, C, Ui, Ue, U. 
 
Table 3 

C [F] R [kΩ]         t20 [s] Texp [s] 

 
C1 = 

R1 =   

......   

Rk =   

 
C2 = 

R1 =   

.......   

Rk =   
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3.5. Observation of relaxation oscillation on the oscilloscope screen 
 
1. Build a circuit shown in fig. 9. Make sure to connect correctly the GND terminal of the power 

supply and the oscilloscope, and to use in the circuit a resistor R of a lower resistance.  
2. Basing on observations of the waveform in the screen, estimate the capacitor’s charging and 

discharging times. 
 
 
 
 
 
 
 
 

Fig. 9. Circuit for observations of relaxation oscillations in oscilloscope screen. 
 
 

4. Results 
 
4.1. Capacitor charging (discharging) process analysis 
  
1. Using a software, plot graphs of charging (discharging) currents in the coordinate system I = f(t) 

and lnI = f(t). In the first case, the measurement points should be spread along the exponential 
curve and in the second case – along the straight line. 

2. Figure out the relaxation times of analyzed processes for various values of the RC product, with 
application of the method chosen by the supervisor. 
a) Method based on finding the slope of the ln I = f(t) graph. In this coordinate system, 

measurement points should be spread along the straight lines lnI = -t/τ + lnI0, (y = bx + a), so 
the calculation of τ=-1/b is limited to calculation of reciprocal of the slope of the line with 
application of the least squares method (in Origin software). Confirm or deny the exponential 

dependence of the current with respect to time, with application of the χ2 test. 
b) Method based on the relaxation time τ definition. In the graph I(t), on the current axis, 

mark values  I1 and I2 with the ratio I2 = I1/e. Then the difference of their abscissa determines 
the time range Δt = τ. Repeat the same procedure for several various point on the plot and 
calculate the average value. 
Ask the supervisor to choose the τ calculation method to be applied. The results have to be 
reported in the table together with τ value calculated based on the half-life time and the 
product τ = RC. 
The combined uncertainty has to be calculated according to the chosen method. 

3. Report the calculation results and measurement uncertainties in table 4. 
 
Table 4 

R [kΩ]  
C [μF] 

 
RC [s] 

 
u(τcalc) [s] 

 
τexp [s] 

 
u(τexp) [s] 

R1= 
C1= 

    

R1= 
C1= 

    

 
. . . . . . . 

.  
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4.2  Analysis of relaxation oscillations 
 
1. Figure out the combined uncertainty uc(T) based on the estimated uncertainties R, C, Ui, Ue, U. 
2. Compare the measured periods Texp with the ones calculated according to the formula Tcalc = RCK 

(fig 11), and report the results in table 5. 
3. Create plots T = f(R) for constant C values. 
 
Table 5 

   R [kΩ]  
C [μF] 

 
Texp [s] 

 

 
Tcalc  [s] 

 

 
u(Texp) [s] 

 

 
u(Tcalc) [s] 

 

 
R1, C1 

 

    

 
........ 

 

    

 
Rk, Cj 

 

    

 
 

5. Questions 
 
1. Describe properties of the system in which relaxation oscillations can take place. 
2. Compare relaxation and harmonic oscillations. 
3. Why do we use RC circuit to analyze relaxation oscillations? 
4. What changes in the capacitor voltage Uc waveform we are going to see in the oscilloscope screen 

after the replacement of the neon lamp with another one of parameters Ui’ = 2Ui i Ue’ = Ue? 
5. Describe operation principles of a neon lamp. 
 
 

6. References 
 
1. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Wiley (2011), part 2, Chapter 31.  
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APPENDIX 1 
 

 The differential equation describing the speed of changes of y value in time is: 

  kyty
dt

dy
    ,          (A1) 

where λ is the proportionality coefficient.  We can find the solution very easily when y decreases 

from the initial value 0y  to the final value )( 0 kk yyy  . This is the differential equation of the first 

order that can be solved with the variable separation method. By multiplying both sides of the 

equation (1) by the expression 
kyy

dt


 and integrating it side-by-side (for the simplicity sake, let’s 

assume the equilibrium condition 0ky ), we will obtain a formula: 

 


dt
yy

dy

k

                  (A2) 

whose primitive function (antiderivative) is function )ln( kyy   

Atyy k ln)ln(            (A3) 

and the solution after taking into consideration the initial condition 0)0( ytyA  , and 0ky  

will be:  

0lnln yty   ,          (A4) 

because 

0

0 lnlnln
y

y
yy            (A5) 

so 

t
y

y


0

ln            (A6) 

after the transformation we obtain the exponential function form: 

te
y

y 
0

           (A7) 

so 
teyty  0)(            (A8) 

 
 In the reverse process when the equilibrium state is reached through the increase of y value, 
its changes in time are described with a complementary exponential dependence:  

 

)].exp(1[ t           (A9) 

 
After taking into consideration in equation (A3) initial condition y(0) = 0 leading to the constant 

condition kyA  , we obtain an equation: 

 

kk ytyy ln)ln(            (A10) 

 
which, after a transformation will have a form of a complementary exponential function: 

 

)1()( t
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APPENDIX 2 
 
Neon lamp properties 

A neon lamp is a glass bulb with two electrodes merged and filled with a noble gas under 
a reduced pressure (order of magnitude of kPa). At a low gas pressure, a free path of particles is 
extended, making it easier to obtain a glowing discharge while a low voltage of several tens of volts 
is applied to the lamp electrodes. We are going to present here a simplified description of this 
phenomenon. 

Electrical conductivity depends on the number of charge carriers. For a gas, charge carriers 
concentration is a dynamic value and its momentaneous value is defined by the velocity of 
generation and recombination of carriers. 

When the external voltage is absent, gas in the neon lamp is ionized thorough a thermal 
dissociation and radiation into positive (cations) and negative (anions) inions what happens only at 
insignificant level and the carrier concentration level is near zero. 

Electric field, created by the voltage applied to lamp electrodes, pushes the existing charges 
towards the respective electrodes, creating a current of a very low value. The lamp resistance is low 
at that time but its value is finite. The increase of voltage leads to increase of drift velocity which 
results in increase of the current until the saturation current is reached which corresponds to 
removal of all carriers present between the electrodes. However, due to insignificant carrier 
concentration, gas enclosed in the bulb can be treated as an insulator. 

At higher voltages, electrons accelerated in electric field reach kinetic energy comparable 
with ionization energy of gas particles. Ionization energy is the energy sufficient to separate electron 
from a gas particle which leads to transformation of an electrically neutral molecule into a free 
electron and a positively charged cation. When the kinetic energy of electrons, due to increase of 
voltage between the electrodes, reaches ionization energy of gas particles, the probability of 
Ionizing collision of electrons with molecules dramatically increases, leading to increase of current 
carrier concentration. In strong electric fields, the kinetic energy of an electron surpasses 
significantly ionization energy and one electron, as a result of subsequent collisions, creates an 
avalanche of positive ions and electrons. The remaining electrons ionize subsequent gas molecules. 
The multiplication process increases rapidly towards anode and the area between the electrodes gets 
fully ionized. 

Increase of the avalanche process leads, due to the difference in the mobility of positive ions 
and electrons, to the creation of inhomogeneous field distribution between the electrodes. Electrons 
as carriers of a high mobility reach the anode without any obstacle. By contrast, the heavy gas ions 
(cations) are drifted significantly slower in the opposite direction, creating a spatial charge between 
the electrodes. The electric field which was initially homogeneous, due to the presence of the 
spatial charge, is concentrated between the spatial charge and the anode. In the proximity of anode, 
due to the increase of the avalanche breakdown, the cation concentration increases and an 
extremely strong electric field is created. 

The cathode surface is being struck by the cations, and the kinetic energy of those cations 
that went through the section from the anode is high enough to strike out the secondary electrons 
from the cathode (This is a so-called secondary emission.). These electrons, additionally accelerated 
in electric field, begin the ionization process at the cathode. The initial factors do not play a 
significant role anymore in the carrier generation process compared by the electron striking from the 
cathode and the ionizing collisions. This phenomenon is called electric breakdown of a gas, and its 
corresponding voltage Ui – ignition voltage. 

Collisions of these electrons that have energy lower that ionization energy of gas molecule 
lead only to excitation of a hit molecule. This energy is radiated out as light quanta. This is why gas 
glowing accompanies avalanche ionization and we can confirm visually presence of this phenomenon. 

The ionized gas is such a good conductor that the current flowing through the lamp is only 
limited by the resistance of the external circuit. 

The important feature of the glowing discharge is its ability to self-sustaining even after the 
voltage falls below Ui value due to the secondary electron emission effect from the cathode that is 
stroke by the gas cations. For this reason, the discharge disappears at the voltage Ue lower than Ui by 
about 20 – 30V. 

According to this description that induction of a glow discharge depends primarily on the gas 
ionization energy and work function of a cathode material. During the optimization of design of neon 
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lamps aiming to reduce ignition voltage Ui, it was found that Ui depends on the product pd where p is 
the gas pressure, d – the distance between electrodes (see fig. 10). Increase of Ui value for high pd 
values (in high pressure range) is caused by reduction of free path, and in the range of low pressures 
and big sizes of the bulb – decrease of the probability of the ionizing collisions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Dependence of neon lamp ignition voltage Ui on the pd product, where p is the gas 

pressure, d – the distance between the electrodes  
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