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On the basis of a local-projective with nonlinear constraints (LPNC)
approach (see K. Urbanowicz, J.A. Hołyst, T. Stemler and H. Benner, Acta
Phys. Pol. B35, 2175 (2004)) we develop a method of noise reduction in
time series that makes use of constraints appearing due to the continuous
character of flows. As opposed to local-projective methods in our method
we do not need to determine the Jacobi matrix. The approach has been
successfully applied for separating a signal from noise in the Lorenz model
and in noisy experimental data obtained from an electronic Chua circuit.
The method was then applied for filtering noise in human voice.

PACS numbers: 05.45.Tp, 05.40.Ca

1. Introduction

It is common that observed data are contaminated by noise (for a re-
view of methods of nonlinear time series analysis see [2–4]). The presence of
noise can substantially affect such system parameters as dimension, entropy
or Lyapunov exponents [5]. In fact noise can completely destroy the fractal
structure of a chaotic attractor [6] and even 2% of noise can make a dimen-
sion calculation misleading [7]. It follows that both from the theoretical as

∗ Presented at the Conference on Applications of Random Matrices to Economy and
Other Complex Systems, Kraków, Poland, May 25–28, 2005.

(2805)



2806 K. Urbanowicz, J.A. Hołyst

well as from the practical point of view it is desirable to reduce the noise
level. Thanks to noise reduction [1, 6, 8–19] it is possible e.g. to restore the
hidden structure of an attractor which is smeared out by noise, as well as to
improve the quality of predictions.

Every method of noise reduction assumes that it is possible to distinguish
between noise and a clean signal on the basis of some objective criteria.
Conventional methods such as linear filters use a power spectrum for this
purpose. Low pass filters assume that a clean signal has some typical low
frequency, respectively it is true for high pass filters. It follows that these
methods are convenient for a regular source which generates a periodic or a
quasi-periodic signal. In the case of chaotic signals linear filters cannot be
used for noise reduction without a substantial disturbance of the clean signal.
The reason is the broad-band spectrum of chaotic signals. It follows that for
chaotic systems we make use of another generic feature of dissipative motion
that is located on attractors consisting of subset of smooth manifolds of an
admissible phase space. As result corresponding state vectors reconstructed
from time delay variables are limited to geometric objects that can be locally
linearized. This fact is a common background of all local projective (LP)
methods of noise reduction.

Besides the LP approach there are also noise reduction methods that
approximate an unknown equation of motion and use it to find corrections
to state vectors. Such methods make use of neural networks [12] or a genetic
programming [13] and one has to assume some basis functions e.g. radial
basis functions [20] to reconstruct the equation of motion. Another group
of methods are modified linear filters e.g. the Wiener filter [19], the Kalman
filter [15], or methods based on wavelet analysis [16]. Applications of these
methods are limited to systems with large sampling frequencies, and they
are confined to the locally linear nearest neighborhood of every point in
phase space.

The method described in this paper can be considered as an extension
of a local-projective with nonlinear constraints (LPNC) approach that was
introduced in Ref. [1]. We call our method the local projection with nonlin-

ear constraints for flows (LPNCF). The method takes into account natural
constraints that occur due to the continuous behavior of flows.

The paper is organized as follows. In the following section we shall
present the LPNCF method and the comparison with LP methods is shown
in Sec. 3. In Sec. 4 we present examples of noise reduction and application
to human voice filtering.
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2. The LPNCF method

In Ref. [1] the LPNC method of noise reduction of deterministic signal
is presented. In this paper we introduce a method that is based on the
formulation given in Ref. [1] but it brings much better results as compared
to LP approach.

Let {xi} for i = 1, 2, . . . , N be the time series. The corresponding clean
signal we denote as {x̃i}, so when the measurement noise {ηi} is present we
come to the formula xi = x̃i + ηi for i = 1, 2, . . . ,N . We can define the time
delay vectors xi = (xi, xi−τ , . . . , xi−(d−1)τ ) as our points in the reconstructed

phase space. Then we can find two nearest neighbors xk,xj ∈ X
NN
n to

vector xn (XNN
n is the set of nearest neighborhood of the point xn). Let us

introduce the following function [1]

Gn(s) = xn−s (xk+1−s − xj+1−s)

+xk−s (xj+1−s − xn+1−s) + xj−s (xn+1−s − xk+1−s) , (1)

for s = 0, 1, . . . , d−1. The function Gn(s) vanishes for clean one-dimensional
systems because it appears as a constraint after eliminating a and b from
the following equations:

x̃n+1 = ax̃n + b ,

x̃k+1 = ax̃k + b ,

x̃j+1 = ax̃j + b . (2)

In the case of higher dimensional systems the function Gn(s) does not always
vanish but is altering slowly in time for dense sampling. This is because the
absolute value of the term Gn(s) is a function of difference of neighboring
data (xk+1−s − xj+1−s) etc., which evolve smoothly in time (near neighbors
behave similar in consecutive time steps). Now one can check that for a
highly sampled clean dynamics there can be derived such a constraint

C
m
n =

m−1
∑

k=0

(−1)lGn(k) ≈ 0 ,

(

l = k +

int(log 2(k))
∑

s=1

int

(

k

2s

)

)

, (3)

where int(z) is a integer part of z and log 2(z) is a logarithm with a base 2
from z. For example with m = 8 the formula (3) gives the following:

C
8
n = Gn(0) − Gn(1) − Gn(2) + Gn(3)

−Gn(4) + Gn(5) + Gn(6) − Gn(7) . (4)
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Such a criterium for a constraint can be understood easily if we notice that
all elements Gn(s) have almost the same value for clean data and small s.
Using this we force the second element of constraint (4) Gn(1) to take the
oppose sign as the first element Gn(0). Then the group consisting of the
third Gn(2) and fourth Gn(3) elements should have the oppose sign to the
group of the first and second element of the constraint (4). If we know that
elements Gn(s) are slightly changing with increasing s the constraint (4)
should vanish for clean data and for large enough m.

Similarly as in LP methods the constraints (3) are ensured in this ap-
proach by application of the method of Lagrange multipliers to an appropri-
ate cost function. Since we expect that corrections to noisy data should be
as small as possible, the cost function is assumed to be the sum of squared
corrections S =

∑N
s=1 (δxs)

2.
It follows that we are looking for the minimum of the functional

S =
N
∑

n=1

(δxn)2 +
N
∑

n=1

λnC
m
n = min . (5)

After finding zero points of 2N partial derivatives one gets 2N equations with
2N unknown variables δxn and λn. However, in such a case the derivatives of
the functional (5) are nonlinear functions of these variables. For simplicity
of computing we are interested to pose our problem in such a way that
linear equations appear which can be solved by standard matrix algebra. To
understand the role of nonlinearity let us write the terms Gn(s) in constraint
C

m
n in such a way that an explicit dependence on the unknown variables is

seen

Gn(s) = G (Xn−s,Xn−s+1) + G (δXn−s,Xn−s+1)

+G (Xn−s, δXn−s+1) + G (δXn−s, δXn−s+1) . (6)

Here we introduced the following notation

G (Xn−s,Xn−s+1) ≡ xn−s (xk−s+1 − xj−s+1) + xk−s (xj−s+1 − xn−s+1)

+xj−s (xn−s+1 − xk−s+1) ,

G (δXn−s,Xn−s+1) ≡ δxn−s (xk−s+1 − xj−s+1)

+δxk−s (xj−s+1 − xn−s+1)

+δxj−s (xn−s+1 − xk−s+1) ,

G (Xn−s, δXn−s+1) ≡ xn−s (δxk−s+1 − δxj−s+1)

+xk−s (δxj−s+1 − δxn−s+1)

+xj−s (δxn−s+1 − δxk−s+1) ,
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G (δXn−s, δXn−s+1) ≡ δxn−s (δxk−s+1 − δxj−s+1)

+δxk−s (δxj−s+1 − δxn−s+1)

+δxj−s (δxn−s+1 − δxk−s+1) , (7)

where

Xn−s = {xn−s, xk−s, xj−s} , δXn−s = {δxn−s, δxk−s, δxj−s} ,

and xk,xj are the nearest neighbors of xn. Indices are defined as

{

n, j, k : xn,xk,xj ∈ X
NN
n

}

.

In the case of uncorrelated noise and under the assumption that the intro-
duced corrections completely reduce the noise effect δxs = −ηs (∀s=1,...,N )
one can neglect the nonlinear terms in Eqs. (7) i.e.

m
∑

s=0

G (δXn−s, δXn−s+1) ∼= 0 ∀ n = 1, . . . ,N. (8)

In the equation (8) we use the fact that 〈ηi〉 = 0 and 〈ηiηj〉 ∼ δij .
Taking into account the assumption (8) one can write the following linear

equation for the problem (5)

M · δX = B, (9)

where M is a matrix containing constant elements, B is a constant vector,
and δXT = (δx1, δx2, . . . , δxN , λ1, λ2, . . . , λN ) are vector dependent vari-
ables (T — transposition). In practice it is very difficult or even impossible
to find the solution of the equation (9) for large N . First, it is time consum-
ing to solve a linear equation with a matrix 2N × 2N matrix for N > 1000.
Second, when M becomes singular the estimation error of the inverse matrix
M−1 is very large. Third, we cannot always find the true nearest neighbors
(the set X

NN
n for clean dynamics) from the noisy data {xi}. Taking into

account the above reasons it is useful to replace the global minimization
problem (5) by N local minimization problems related to the nearest neigh-
borhood X

NN
n . The corresponding local functionals to be minimized are

SNN
n =

∑

s

(δxs)
2 + λnCm

n = min ,

∀ n = 1, . . . , N , where
{

s : xs ∈ X
NN
n or xs ∈ Xn+1

}

. (10)

We can consider the minimization problem (10) as a certain approximation
of (5). The global problem (5) is equivalent to Eq. (9) with 2N unknown
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variables that should be found single-time. The problem (10) is equivalent
to a system of coupled equations that should be solved several times and as
a result one gets an approximate global solution. Writing Eq. (10) in the
linear form i.e. calculating the zeros of corresponding derivatives and using
Eq. (8) one gets N linear equations as follows

Mn · δXλ
n = Bn , ∀ n = 1, . . . ,N , (11)

where
(

δXλ
n

)T
= (δxn, δxk, δxj , δxn+1, δxk+1, δxj+1, λn). The matrices Mn

corresponding to (10) avoid the disadvantages of (9), i.e. they are not sin-
gular, their dimension is small and they do not substantially depend on the
initial approximation of nearest neighbors. Matrix Mn for m = 1 is given by

M n =
2

6

6

6

6

6

6

6

4

2 0 0 0 0 0 xk+1 − xj+1

0 2 0 0 0 0 xj+1 − xn+1

0 0 2 0 0 0 xn+1 − xk+1

0 0 0 2 0 0 xj − xk

0 0 0 0 2 0 xn − xj

0 0 0 0 0 2 xk − xn

xk+1 − xj+1 xj+1 − xn+1 xn+1 − xk+1 xj − xk xn − xj xk − xn 0

3

7

7

7

7

7

7

7

5

.

(12)
Vector Bn has the form B

T
n = {0, 0, 0, 0, 0, 0,−Gn(0)}. Note that this ma-

trix in one-dimensional case is the same for LPNC method given in Ref. [1],
but constraints and matrix Mn will essentially differ in higher dimensions
for both methods.

3. Comparison to standard LP methods

Minimizations problems used in standard LP methods and in this method
Eq. (3) are not equivalent because in our case we do not have to estimate the
Jacobi matrix at all. These differences in practice are as follows (a) Eq. (3)
is nonlinear against corrections δxi. The approximation in this case means
a corresponding linearization. (b) For constraints in standard LP methods
we do not know the exact values of Jacobi matrix A. The approximation
means that Jacobi matrix A is estimated from noisy data. The LP meth-
ods look for subsequent corrections to noisy data by finding of a subspace
tangent to an unknown attractor corresponding to the clean dynamics and
projecting noisy data on this subspace. If one tries to estimate the posi-
tion of the tangent subspace, what is equivalent to estimation of the Jacobi
matrix A from noisy data, the range of the neighborhood should be larger
than the magnitude of noise. Such a procedure should allow to distinguish
between the dominating direction (connected with system dynamics) and
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random directions connected with a noise (see Figs. 1(a) and 1(b)). If the
noise level is very high it is not possible to use the tangent subspace to find
the attractor of the clean dynamics since the range of the necessary nearest
neighborhood would be very large and the linear approximation would be
invalid (see Fig. 1(c)) [21]. On the other hand, if we consider the minimal-

 

a) b) c) 

Fig. 1. The plot of the clean attractor (continuous line), noisy data connected to

this attractor (black dots) as well as range of the nearest neighborhood taken under

consideration to determine tangent subspace (rectangle). The level of noise for the

case (c) is so high that a linear approximation is no longer valid.

ization problem (5) we do not need to find the Jacobi matrix A but only
to take into account the constraint equation (3). Such an approach makes
it possible to use a neighborhood smaller than the noise magnitude and in
our approach the corresponding number of nearest neighbors equals 2. Note
that here we encounter a flow, so nearest neighbors searching is not so bi-
ased as local projection. To find two nearest neighbors X

NN
n to xn we use

the Delaunay triangulation [22] and the method to find is given in Ref. [1].
Searching nearest neighbors by Delaunay triangulation is very time consum-
ing. That is why we first look for the Nnn nearest neighbors by means of
Euclidian distance minimization and then perform the Delaunay triangula-
tion only on this nearest neighborhood. This approach is as fast as standard
nearest neighbors searching. Accordingly to the needs, e.g. in online noise
reduction of human voice, one can think about speeding up the method. As
we mention in our approach we need only two nearest neighbors as opposed
to standard LP methods, so looking only for the two nearest neighbors close
in time would make the searching for closest neighbors very fast and the
method robust against high non-stationarity.

One can ask on the smallest sampling rate per cycle RS which makes the
method applicable. As we have checked the method works even for the rate
RS comparable with the m parameter used in Eq. (3) but then the efficiency
is smaller than for the standard LP method. The method works the best
for more than 2m samples per cycle. We have taken the embedding window
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d τ used in nearest neighbor searching as long as one cycle. The method is
robust against changing the number of taken nearest neighbors, as opposed
to standard LP methods what will be seen in the next section.

4. Noise reduction: examples and applications

Let us define the noise level N

N =
σ

σDATA
, (13)

where σ is a standard deviation of noise and σDATA is the standard deviation
of data. The efficiency of noise reduction we calculate by means of the gain
parameter which is defined as

G = 10 log

(

σ2
noise

σ2
red

)

, (14)

where σ2
noise is the variance of added noise and σ2

red is the variance of noise
left after noise reduction. The gain parameter can be transformed into
another parameter: %R, which says how much noise is reduced: %R =
(1 − σ2

red/σ2
noise) 100%. In Fig. 2 the dependence of the %R parameter on

the basic parameter G is presented. The gain parameter G is commonly
used in the evaluation of the noise reduction because it gives more relevant
information especially in the regime %R > 90%. We use the standard Lorenz
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Fig. 2. The plot of the %R parameter on the gain parameter G.

model to evaluate the performance of noise reduction methods. The Lorenz
system is described by a system of three coupled differential equations

ẋ = ξ · (y − x) ,

ẏ = ρx − y − xz ,

ż = xy − βz . (15)
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The model is widely used for a description of Rayleigh–Benard instabilities
in fluids [23] and in quantum optics for laser dynamics [24]. We use stan-
dard parameters for this system, i.e. ξ = 10; ρ = 28;β = 8/3, for which
the standard “butterfly” attractor can be observed. To verify our method in
a real experiment we have performed analysis of data generated by a non-
linear electronic circuit. The Chua circuit is one of the simplest electronic
nonlinear system that exhibits chaotic behavior [25, 26]. The nonlinearity
comes from two parallel connected negative resistors which are realized by
amplifiers with a corresponding feedback. The Chua circuit has been studied
in the presence of noise added to the outcoming signal. The noise (white
and Gaussian) has been generated by an electronic noise generator. The
LPNCF scheme of noise reduction improves estimations of invariant param-
eters. Figs. 3–5 present calculations of the correlation dimension D2 versus

threshold ε for the clean Lorenz system, the Lorenz system with noise and
the latter parameter after noise reduction, respectively. Using a standard
procedure one looks for a plateau in an intermediate threshold region. In
fact one can observe that the plateau D2 ≈ 2 cannot be found in Fig. 4
corresponding to the noisy Lorenz system with the noise level N = 48% but
is well seen after the noise reduction with the LPNCF method (see Fig. 5).
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Fig. 3. The plot of the correlation dimension D2 versus the threshold ε for the

clean Lorenz system.

We have made a quantitative comparison between LPNCF and GHKSS
method. GHKSS method [19] is the implementation of the standard LP
approach that we think are optimal and most efficient. In case of both
methods we use the same scheme of neighbors searching, i.e. the minimiza-
tion of Eucleadian distance, in addition for LPNCF method we apply then
the Delaunay search which is not needed for GHKSS method. For large
sampling rate we did always some time averaging with curvature correc-
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Fig. 4. The plot of the correlation dimension D2 versus the threshold ε for the

Lorenz system with noise N = 48%.
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Fig. 5. The plot of the correlation dimension D2 versus the threshold ε for the

Lorenz system with noise after noise reduction.

tion [19] that improve the gain in both methods. For all the calculations
we use 8 iterations of both methods. The projection dimension for GHKSS
3–12 and m for LPNCF method are in the range 4–64. We can say that
the complexity in programming of the both methods is comparable. The
LPNCF method implemented at 2.5 GHz computer is approximately 2–3
times too slow to be used for on-line noise reduction in voice and to receive
a substantial improvement of the voice recognition.

Figs. 6–8 show the clean Chua attractor, with measurement noise N =
46% and after noise reduction, respectively. The LPNCF approach is used
for m = 3−12 when sampling ratio was about 50 per full cycle. The efficiency
was G = 9.48 (%R = 88.7%) when the GHKSS method did G = 9.33
(%R = 88.3%).
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Fig. 6. The sampling corresponding to a clean trajectory in the Chua circuit (real

experiment).

1.9 2.0 2.1 2.2 2.3 2.4 2.5

1.9

2.0

2.1

2.2

2.3

2.4

2.5

 

 

V
n+

10
 [V

]

V
n
 [V]

Fig. 7. The sampling received from the Chua circuit in the presence of a measure-

ment noise N = 46%. Note the difference in scale.
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Fig. 8. The sampling of Chua circuit received after the noise reduction applied to

data presented in Fig. 7.
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We analyze the behavior of noise reduction by the LPNCF and the
GHKSS method against increasing sampling rate per cycle RS (see Fig. 9).
It is clear that the efficiency of LPNCF method should increase for larger
sampling rate RS. In the figure one can see for large RS that the
LPNCF method is more efficient than GHKSS method while it is less ef-
ficient for small RS. We compare the efficiency of these two methods for
various noise levels N (see Fig. 10). One can see that LPNCF method in this
case is more efficient for high noise levels starting from 30%. This is because
for large noise levels it is difficult in GHKSS method to determine properly
the tangent subspace as it was explained in the previous section. The last
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Fig. 9. The efficiency of noise reduction by LPNCF and GHKSS method for differ-

ent sampling rate RS. Here the Lorenz system [23] was used (N = 48%, N = 5000,

Nnn = 20).
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Fig. 10. The efficiency of noise reduction by the LPNCF and GHKSS method for

different noise level N . Here the Lorenz system [23] was used (RS = 66, N = 5000,

Nnn = 20).
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comparison of these two methods shows the dependence on the number of
regarded neighbors Nnn (see Fig. 11). In the LPNCF method the parameter
Nnn describes the number of neighbors that are used in preliminary search
for candidates to the Delaunay procedure. It is shown in this figure that for
small number of neighbors the LPNCF method can be used without the loss
of efficiency. Such a behavior is very useful for non-stationary data, when
the large number of neighbors could not be found or when because of cor-
related noise one should omit neighbors close in time. The GHKSS method
did some noise reduction for small Nnn because here most corrections come
from the time averaging which alone made G = 7.2 (%R = 80.9%).
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Fig. 11. The efficiency of noise reduction by the LPNCF and GHKSS method for

various number of neighbors Nnn. Here the Lorenz system [23] was used (N = 48%,

RS = 66, N = 5000).

We applied successfully our method to noise reduction from human
voice [28]. In Fig. 12 we show a clean time series of the recorded sentence
“Hello world, my name is Krzysztof Urbanowicz” (upper panel), this time
series with temporally decreasing measurement noise (middle panel) and af-
ter noise reduction (bottom panel). Noise reduction was made in windows
of length N = 5000, with parameter m = 3–12. The voice was recorded
with sampling 22050 Hz what gives RS ≈ 120. The embedding window
d τ = 100, so it covers almost the whole cycle. Fig. 13 presents the efficiency
of LPNCF and GHKSS methods. As it is suspected the LPNCF method did
less for small noise levels (see for the comparison Fig. 10). Note that here
we use larger number of neighbors than in Fig. 10 i.e. Nnn = 60. For large
noise level both methods work comparably. The gain of the noise reduction
for whole data set shown in Fig. 13 is G = 11.4 (%R = 92.8%) for LPNCF
and G = 11.7 (%R = 93.2%) for GHKSS. Such values of noise reduction im-
prove significantly voice recognition for intermediate noise levels. After the
performed noise reduction the background noise is not heard in the recorded
signal.
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Fig. 12. The voice time series of sentence “Hello world, my name is Krzysztof

Urbanowicz”. From the upper panel to the bottom there are clean signals then a

series with decreasing measurement noise and a noisy signal after noise reduction,

respectively.
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Fig. 13. The efficiency of noise reduction of human voice by the LPNCF and

GHKSS method for different noise level N (N = 5000).

5. Conclusions

In conclusion, we developed the method of noise reduction design for
flows. It uses a nonlinear constraints that appear due to the continuous
behavior of flows. To efficiently perform the noise reduction one needs to find
only two nearest neighbors. The method is robust against input parameters
estimation as well as for highly non-stationarity data. We applied with
success the method for noise from human voice separating.
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