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Theory of oscillations in average crisis-induced transient lifetimes
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and Institute of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
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Analytical and numerical study of the roughly periodic oscillations emerging on the background of the
well-known power law governing the scaling of the average lifetimes of crisis induced chaotic transients is
presented. The explicit formula giving the amplitude of ‘‘normal’’ oscillations in terms of the eigenvalues of
unstable orbits involved in the crisis is obtained using a simple geometrical model. We also discuss the
commonly encountered situation when normal oscillations appear together with ‘‘anomalous’’ ones caused by
the fractal structure of basins of attraction.@S1063-651X~99!02407-1#

PACS number~s!: 05.45.Ac
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I. INTRODUCTION

Crises@1# appearing in nonlinear dissipative systems e
hibiting deterministic chaos are abrupt changes undergon
a chaotic attractor due to its collision with an unstable pe
odic orbit B, when a system parameterp, varied continu-
ously, crosses a critical valuepc . The phenomenon can als
be described as the collision of the stable manifoldws

(B) of B
with the unstable manifoldwu

(A) of another orbitA of the
same period embedded in the attractor~heteroclinic crisis! or
the unstable manifoldwu

(B) of B itself ~homoclinic crisis!.
One of the branches of the stable manifoldws

(B) is the bound-
ary of basin of the attractor, which is in turn the closure
one of the branches of the unstable manifoldwu .

In the dynamics after crisis~for p*pc) characteristic
transients appear@2#; the system remains for some time o
the former ~precritical! attractor, which is now a chaoti
saddle. In the case of aboundary crisisthe transient is fol-
lowed by a definitive escape to some other attractor in
phase space, while after aninterior crisis transients are in-
terrupted by~typically short! bursts to an extension of th
precritical attractor. After anattractor merging crisiswe
have intermittent jumps between symmetric precritical pa
of the attractor.

For a large class of dynamical systems the timet that the
system stays on the precrisis attractor has an expone
probability distribution Pr(t)5(1/T)exp(2(t/T)) with a
mean valueT obeying a power scaling law@2#

T;~p2pc!
2g. ~1!

For most two-dimensional dissipative maps, the exponeng
.0 can be expressed in terms of the eigenvaluesl1
(ul1u.1) andl2 (ul2u,1) of the saddle orbitA for hetero-
clinic crisis @2,3#:

g5
1

2
1

logul1u
zlogul2uz , ~2!
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or of the orbitB for homoclinic crisis:

g5
logul2u

2 logul1l2u
. ~3!

The power law~1! and the formulas~2! and ~3! have been
confirmed in many numerical and experimental studies~e.g.,
@4–6#!.

However, it has also been noticed@7,3# that Eq.~1! de-
scribes only the general tendency of the functionT(p2pc),
and imposed on it one can observe some oscillations~cf.
Figs. 3 and 4! resulting from a ragged~fractal! measure of
the chaotic attractor colliding with its basin of attraction@8#.
In the case of a homoclinic crisis their period on a log-l
plot of T(p2pc) is zlogul2uz, and their amplitude is large fo
small ul2u. These oscillations have been indicated as a
tential complication to verifying the scaling law~1! and de-
termining the critical exponentg. Further on we shall refer to
these attractor induced oscillations asnormal oscillations.

Recently@9# we studied another kind of oscillation cause
by the intertwined~typically fractal! structure of precritical
basins of attraction@10,11#. We called themanomalous, be-
cause of the appearance of increasing pieces of the func
T(p2pc), contrary to the general decreasing trend~1!. The
maximal amplitude of the oscillations has been calcula
using a simple model of a self-similar intertwined basin. O
cillations of both kinds can be noticed onT(p2pc) plots
obtained for crises in different systems studied numerica
@12# and experimentally@5#.

In this paper we derive a formula for the amplitude of t
attractor-induced oscillations in systems that can be redu
to two dimensional maps for the generic case when the
gency of manifolds at the crisis point is quadratic~Sec. II!. In
Sec. III the typical case when both kinds of oscillation a
pear together is discussed.

II. ATTRACTOR-INDUCED OSCILLATIONS

As a consequence of crisis the chaotic attractor becom
chaotic saddle, and almost every point, after a transien
average lengthT, finally diverges from it. However, forp
*pc we can define apseudobasinas a set of initial condi-
tions evolving to the saddle after, say,M iterations, where
403 ©1999 The American Physical Society
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M!T. The structure of the pseudobasin is very similar
that of the real basin before crisis. In what follows, we sh
refer to the complement of the postcritical pseudobasin as
basin of escape, for the trajectory leaves the chaotic sa
soon after entering it.

The average transient timeT is proportional to the inverse
of the measurem of the part of the saddle overlapping th
basin of escape@2#,

T~p2pc!;
1

m~p2pc!
. ~4!

A. The model of the chaotic saddle

In order to assess the amplitude of normal oscillations
introduce a model of the fragment of the chaotic attrac
~which becomes a chaotic saddle at the crisis point! colliding
with the boundary of its basin of attraction. Assume that
half-planey,0 is the~nonfractal! basin of escape. Imagine
as the first approximation, that the chaotic saddle in the
cinity of the tangency point consists of two parabolic se
ments:A1

(1)5$(x,y):y5x21a2r % and A2
(1)5$(x,y):y5x2

2r %. The measurem of the considered fragment is distrib
uted uniformly along both segments, itsh part falling on
A2

(1) and the remaining 12h on A1
(1) , hP(0,1). The quan-

tity r;p2pc corresponds to the bifurcation parameter of t
system measured as the distance from the crisis point. In
second step we assume that the segment:A2

(1) is composed of
two subsegments:A2

(2)5$(x,y):y5x21aa2r % and A3
(2)

5$(x,y):y5x22r %, aP(0,1), with the measure distributio
m(A2

(2))5h(12h), m(A3
(2))5h2. Further on, a similar split

of A3
(2) into A3

(3)5$(x,y):y5x21a2a2r % and A4
(3)

5$(x,y):y5x22r % with m(A3
(3))5(12h)h2, m(A4

(3))
5h3 follows. In this manner in thenth step of the above
procedure we obtain a setAn of parabolic segments

An5 ø
i 51

n

AiøAn11 , ~5!

where Ai5$(x,y):y5x21aa i 212r %, m(Ai)5(12h)h i 21

andAn115$(x,y):y5x22r %,m(An11)5hn ~cf. Fig. 1!. The
setAn is characterized by two parametersa andh; the ad-
ditional parametera just shifts the scale and is not importa
in further calculations.

To get the model of a real chaotic saddle we should
course, putn→`, but due to the limited precision in dete
mining p2pc in any measurement or simulation, takin

FIG. 1. Model attractorAn for n5k11 penetrating the basin o
escape atr 5ak and r 5ak21.
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some large enough but finiten gives a sufficient approxima
tion. Furthermore, in the real fractal set each segment ofAn
denoted byAi has its own infinite fine structure, giving ris
to a noninteger total fractal dimension. We ignore it in o
model because it makes only a secondary contribution to
investigated oscillations. The parametera corresponds to the
absolute value of the contracting eigenvaluel2 of the orbit
A(B) for a heteroclinic~homoclinic! crisis and determines
the period of normal oscillations ofT(r ) in log-log scale.

B. Amplitude of normal oscillations

Now consider the postcritical situation withr .0 ~Fig. 1!,
when the attractorAn slides into the basin of attraction. Fig
ure 2 shows the average transient lifetimeT as a function of
r obtained by taking the relation~4! as an equality. We can
see the linear trend according to the power law~1!, and ad-
ditionally periodic oscillations imposed on it. The steps co
respond to collisions of consecutive segments ofAn with the
half-planey,0, so their period equalsu log10au. Our aim is
to derive the amplituded of the oscillations. In the first step
let us calculate the slopeg. To do this, consider one perio
of oscillations for r P@ak,ak21# ~see Figs. 1 and 2!. For
small r, when Ar @r is valid, the length of the parabol
sectiony5x21c2r that entered the basin of escape is a
proximately equalAr 2c ~for r .c). Thus, the measure o
the attractor in the basin of escape can be written as

m~r !5hk11Ar 1hk~12h!Ar 2ak. ~6!

We assumedn5k11 in Eq.~5!, neglecting the further split-
ting of Ak12. The slope is

g5
logT~ak!2 logT~ak21!

u logau
. ~7!

Using Eqs.~4! and ~6! and applying the approximation
Aa2121'a21/2 for a!1, we get

g5
1

2
1

logh

loga
. ~8!

Comparing Eqs.~8! and ~2! and remembering thata5ul2u,
we note that for a heteroclinic crisish51/ul1u, so the pa-
rameterh has a simple interpretation in this case.

FIG. 2. Plot of the functionT(r ) for the model crisis at the
parameter valuesa51, a50.01, andh50.01. The slopeg51.35
@Eq. ~8!#; amplitude of oscillationsd51.32 @Eq. ~13!#.
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The quantityD511 logh/loga is the pointwise dimen-
sion of the attractor at the tangency point, it can be cal
lated directly from the definition@13# applied toAn with n
→`. Equation~8! is in accordance with the relationg5D
21/2, which has been derived on the basis of the geomet
consideration in@14#.

In order to calculate the amplitude of oscillationsd, con-
sider the derivatived„logT(r)…/d(log r) @cf. Eqs.~4! and~6!#;
it increases monotonically from2` at r 5a1

k and tends to
21/2 for r→a2

k21 ~see Fig. 2!. At a value of r 5xak,x
P(1,1/a) the function log10T(r ) is tangent to its lower
bounding line and the derivative

d logT~r !

d log r U
r 5xak

52g. ~9!

The amplitude of oscillationsd can be calculated as the di
ference of the function log10T(r ) and its upper bounding
line at r 5xak:

d5$ logT~ak!2g@ log~xak!2 logak#%2 logT~xak!.
~10!

From the condition~9!, using Eqs.~4!, ~6!, and~8! we get,
after some algebra,

x5

2k
g

g2
1

2

212A112k
g

g2
1

2

2~k21!
, ~11!

where

k5~a2(g21/2)21!2. ~12!

Putting Eqs.~4! and ~6! into Eq. ~10! we get

d5 log
Ax1Ak~x21!

xg
, ~13!

with k andx determined by Eqs.~12! and~11!, respectively.
The amplituded may be considered as a function of tw
variablesa andg. Taking into account thata5ul2u and the
exponentg is given by Eq.~2! or Eq. ~3!, d ~similarly to g)
can be expressed in terms of the eigenvalues of the uns
periodic orbit involved in the crisis.

We can also define the width of the belt containing os
lations d̃5d/Ag211 ~see Fig. 2! as the quantity describing
the real visibility of the oscillations, unaffected by the slo
g. The widthd̃ is an increasing function ofg and a decreas
ing function of a. The latter fact, as was mentioned, h
already been noticed previously@8# for homoclinic crises.

C. Numerical example: Boundary crisis in the Hénon map

We applied the formula~13! to boundary crises in the
Hénon map,

xn115p2xn
22Jyn ,

~14!
yn115xn .
-

al

ble

-

Consider, for example, the crisis atJc520.1 and pc
51.803 239 48 . . . . For p,pc there is a chaotic attracto
that becomes a chaotic saddle after collision with an unsta
fixed point atp5pc ~heteroclinic crisis!. The basin of attrac-
tion is solid~no intertwined structure! near the boundary. Fo
p*pc a typical orbit remains on the saddle for some timt
and then rapidly diverges to infinity. Figure 3 shows t
average length of the transients as a function of the dista
from the crisis point. At every particularp the lengths of the
transients were measured and averaged over a set of in
conditions from the basin of the precritical attractor. Osc
lations superimposed on the linear trend withg'0.729, ac-
cording to Eq.~2!, can be seen. Their average period is a
proximatelyu log10l2u51.3. The dashed lines of the slopeg
mark the amplitude of oscillationsd'0.16 calculated from
Eq. ~13!. On can see that it gives a good estimate for the s
of the observed oscillations.

III. CLOSER TO REALITY—BOTH KINDS
OF OSCILLATIONS COMBINED

A. Anomalous oscillations

As we have already mentioned in the introduction, a
other kind of oscillation imposed on the general trend d
scribed by Eq.~1!, resulting from the intertwined structure o
the precritical basins of attraction, may often be encounte
Let us briefly recall the model we developed in@9# in order
to assess the maximal amplitude of the anomalous secti

We defined the basin of escape~that was just the half-
plane y,0 in the preceding section! in the vicinity of a
collision point as a self-similar setBn of stripes of the width
b ibE accumulating at the geometric rateb to the liney50:

Bn5 ø
i 50

n

ˆ$x,y%:y.2b ib`y,2b ib1b ibE‰

øˆx,y%:y.2bn11b`y,0‰. ~15!

As a model attractor, in turn, we took a single parab
y5x22r ~this would correspond toA0 from the previous
model!. The meaning of the quantitiesn and r is similar to
that in the model from the preceding section.

FIG. 3. Average transient length after the heteroclinic bound
crisis in the He´non map forJ520.1 andpc51.803 239 48 . . . .
The dashed lines indicate the amplitude of the attractor-indu
oscillations calculated from our model, Eq.~13!. The standard de-
viation is of the order of or below the size of the plotted points.
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Plotting logT(r), as in Fig. 2, we get saw-shaped oscill
tions of the periodu logbu determined by the scaling factor o
the basin of escape, superimposed on a linear trend. Ano
lous sections appear whereT(r ) is increasing. Carrying out a
calculation similar to that forg from the preceding section
we obtained an expression for the amplitude of the ano
lous sectionsD5 logT(r2)2log10T(r 1), wherer 1 andr 2 de-
note, respectively, the beginning and end of the section~cf.
Figs. 4 and 5!:

D5~1/lnq!sinh21AS/b, ~16!

whereS5(b2bb2bE)/bE is the relative size of gaps in th
basin andq is the base of the logarithms in the plot logq T vs
logq r ~in this paper we useq510).

We argued that the above formula gives the estimate
themaximalamplitude of anomalous oscillations that in re
dynamical systems are only roughly regular. In fact,
attractor-induced oscillations are always present, but they
often dominated by the anomalous ones. Both kinds of os
lations can be distinguished on plots ofT(p2pc), provided
the amplitude of the anomalous ones is relatively small.

The parameterb in Eq. ~15! corresponds to the invers
absolute value of the expanding eigenvaluel2 of the medi-

FIG. 4. Average transient length after the homoclinic bound
crisis in the He´non map forJ50.3 andpc52.124 672 43 . . . . The
dashed lines indicate the amplitude of the attractor-induced osc
tions calculated from our model, Eq.~13!. Tiny peaks of anomalous
oscillations are visible.

FIG. 5. Average time of residence on one of the precriti
attractors after an attractor-merging crisis in the spin system
Ac51, tc52p, lc50.143 700 2. . . , andBc51. The solid line
has been obtained by combining the self-similar attractorAn and
basin Bn models with the parameter valuesa50.002 34, g
50.77, b50.124,S50.077, andb/a53.83.
a-

a-

r
l
e
re
il-

ating orbitB, whose stable manifoldws
(B) is the basin bound-

ary @10#. For homoclinic crises in strictly dissipative system
when ul1l2u,1 the period of anomalous oscillation
u logbu5ulogl1u is always smaller than that of the norm
oscillationsu logau5ulogl2u.

B. Numerical example: Hénon map

As an example let us look at the average transient l
times after a homoclinic boundary crisis that occurs in
Hénon map~14! at Jc50.3 andpc52.124 672 450 . . . . If
we make the log-scale plot ofT(p2pc), Fig. 4 ~hereT is
again the length of chaotic transient before the escape
infinity, averaged over a set of initial conditions!, measuring
T with appropriate accuracy and marking subsequent po
densely enough, we can see tiny anomalous peaks with
erage period 0.97'u logl1u, wherel1 is the expanding eigen
value of a period 3 orbitB mediating in a crisis. These os
cillations are superimposed on the linear trend~1! and,
dominating here, oscillations due to the ragged measur
the chaotic attractor. Again, the dashed lines show the
plitude of the normal oscillations calculated from Eq.~13!.

Using the formula~16! we can calculate the maximal am
plitude of anomalous oscillationsD50.168. This value is
very close to the maximal amplitude ('0.16) measured in
Fig. 4. The parameterS'0.0167 has been determined from
few consecutive magnifications of the fractal basin bound
at the tangency point.

C. Mixed case: Example of attractor merging crisis
in a spin model

One can see that the models of the self-similar attrac
and basin of escape in the vicinity of crisis tangency giv
good assessment of the amplitude of attractor-induced o
lations and the maximal amplitude of anomalous oscillatio
respectively, although a very simplified picture of mu
more complex real structures has been assumed. The
similarity included in the models is, however, the main fe
ture yielding the oscillations. To model the generic ca
when both kinds of oscillation appear together, we can co
bine both models observingT(r ) when An penetratesBn .
One then obtains some irregular pattern of oscillations su
imposed on the power law~1! ~unless an exceptional set o
parameters is used; e.g.,a5b anda5b). Nevertheless, the
maximal amplitude of anomalous sections is determined
Eq. ~16!, and Eq.~13! gives a good approximation of th
amplitude of normal oscillationsd—provided they are not
dominated by the anomalous ones.

To illustrate this and compare to a crisis in a real dynam
cal system, let us consider an attractor-merging crisis i
spin model describing the motion of a classical magne
moment~spin! S,uSu5S in the field of uniaxial anisotropy
~easy/hardz axis! and transversal periodic impulse magne
field B̃(t)5B(n51

` d(t2nt) along thex axis @15,16#. The
system can be described by the HamiltonianH52A(Sz)

2

2B̃(t)Sx , whereA is the anisotropy constant. The time ev
lution is determined by the Landau-Lifschitz equation w
an added damping term:

y

a-

l
r
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dS

dt
5S3Beff2

l

S
S3~S3Beff!, ~17!

whereBeff52dH/dS is the effective magnetic field andl
.0 is a damping parameter. Equation~17! can be trans-
formed into a superposition of two two-dimensional ma
@15,17# describing the time evolution between field impulse
and the effect of the impulse itself, respectively.

For Ac51,tc52p, lc50.143 700 2. . . , andB*Bc51,
we observe a crisis-induced chaos-chaos intermittency;
random jumps between two symmetric precritical chaotic
tractors. Figure 5 shows the average residence timesT on
one of the symmetric parts of the attractor as a function
B2Bc measured in a computer simulation together with
correspondingT(r ) function (r 5B2Bc) obtained from the
combination of the model attractor, Eq.~5!, and basin of
escape, Eq.~15!. The ratio of the ‘‘initial size’’ parameters
a/b that is now important was determined from the pictu
of the attractor and basin tangencies at the crisis point, b
may also be treated as a fit parameter. The anomalous o
lations are clearly seen; their maximal observed amplit
again coincides with the value given by Eq.~16!. One can
also recognize a faint vestige of the attractor-induced os
lations, now veiled by the anomalous ones. It is notable
the model curve reproduces quite well the pattern yielded
the real dynamical system, despite the above mentioned
plifications. This proves the fact that the self-similar stru
ture of the attractor and the basin included in the model
the basic feature underlying the emergence of oscillatio
The whole finer fractal structure gives just secondary con
butions. It also indicates the possibility of using the co
bined model to predict the behavior of the functionT(p
2pc) for the p values very close topc , where the direct
measurement is impossible because of very long trans
times or the limited precision of determiningp2pc .
. A
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IV. SUMMARY AND CONCLUSIONS

We have investigated the deviations from the gene
power law governing the dependence of average trans
times near crises. Two different kinds of oscillations ha
been distinguished: normal, caused by the self-similar~frac-
tal! structure of the attractor; and anomalous, due to the s
similar intertwined structure of the precritical basins of a
traction. The pure normal oscillations can be observed w
the basins of attraction are solid, without intertwined stru
ture. We showed, using a simple model of an attractor, t
their amplitude is determined, similarly to the critical exp
nent g, by the eigenvalues of the unstable periodic orb
involved in the crisis.

When basins are intertwined, both kinds of oscillatio
appear simultaneously, but the normal ones are visible o
when the anomalous ones are relatively small. In a typ
mixed case, a rather complicated pattern resulting from
interference of self-similar~fractal! structures of the attracto
and basin is observed. The roughly periodic anomalous
cillations can, however, be noticed and their maximal am
tude can be calculated from a formula obtained on the b
of a simple model of a self-similar basin of attraction. Bo
models combined give a good approximation of the patte
produced by real dynamical systems and may be use
predict the behavior ofT(p2pc); e.g., in regions inacces
sible to measurement.

The obtained results are applicable to a large class
two-dimensional systems undergoing different types of c
ses. The models can also be modified to get a still m
detailed picture or to treat some special nongeneric case
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