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Abstract

Ising spins put onto a Barab!asi–Albert scale-free network show an e,ective phase transi-
tion from ferromagnetism to paramagnetism upon heating, with an e,ective critical temperature
increasing as the logarithm of the system size. Starting with all spins up and upon equilibration
pinning the few most-connected spins down nucleates the phase with most of the spins down.
c© 2002 Elsevier Science B.V. All rights reserved.
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Networks with more complicated connectivities than periodic lattices have been
investigated in detail recently. For example, the Barab!asi–Albert network [1] is grown
such that the probability of a new site to be connected to one of the already existing
sites is proportional to the number of the previous connections to this already existing
site: the rich get richer. Similar networks have been investigated [2] to check if destruc-
tion of a few computers will split the percolating cluster of the internet (i.e., the set of
all computers in the world connected directly or indirectly with each other). Networks
exist also in social models where vertices are individuals or organizations, and links
correspond to social relationships between them [3]. However, as far as we know, all
studies of the scale-free Barab!asi–Albert networks considered only the topology and
no interactions between linked vertices.

Here we investigate the ordering phenomenon in this Barab!asi–Albert network, if
Ising spins are put onto the sites (vertices) of the network. We assume ferromagnetic
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coupling between linked spins and positive temperature T of the system. Such a magnet
would show paramagnetism if the whole network is still connected but only weakly
such that thermal Guctuations destroy the spontaneous magnetization. (Bose–Einstein
condensation on similar networks was already studied before [4], as was the Ising
model on small-world networks [5], and other Ising models are in preparation [6].) In
the social example one could identify exp (−const=T ) with the probability that members
of the same social group are not convinced to share the same opinion. (Spin variables
Si = ±1 then correspond to two possible opinions of the group members on the same
subject.)

Thus we create a Barab!asi–Albert network of N sites added to an initial core of m
fully connected sites. Each of the N new nodes is connected to m randomly selected
previous nodes. (We allow more than one connection to the same site for the later
added nodes; mostly we take m = 5.) Then we freeze this network structure, put an
Ising spin Si = ±1 onto every site, with all spins up initially. Then with the standard
heat bath Monte Carlo algorithm spins search for thermal equilibrium at temperature
T (all temperatures are given in units of coupling constant over Boltzmann constant).
Fig. 1a shows the resulting magnetization (averaged over the last half of 500 sweeps
through the network) versus temperature; it seems to decrease exponentially with
increasing temperature, until due to ?nite-size e,ects it oscillates about zero. This
e,ective Curie temperature TC(N ) is ?tted in Fig. 1b onto 2:6 ln(N ) − 3 for
56N6 5; 000; 000. (A percolation threshold vanishing as 1=ln(N ) was given in
Ref. [7, Eq. 144].)

Fig. 2 shows that in the ferromagnetic region the spins with few neighbours Gip up
and down while those with many neighbours point up most of the time.

Analogous to the appearance and spreading of new opinions in society [8], we now
try to Gip the spontaneous magnetization for T ¡TC by forcing the most-connected
spin permanently down; then we pin in the same way the second-most-connected spin,
and so on, all in time intervals of 50 iterations. We see that, in general, removal of the
few leading spins having hundreds of neighbours is suJcient to Gip the magnetization.
(Since we do not apply any magnetic ?eld and have no ?xed boundary conditions, we
expect the Gipping of the magnetization to be a nucleation event, which would happen
even if we Gip only one randomly selected spin provided we wait long enough.) Fig. 3
shows the magnetization versus time averaged over 100 samples. Higher temperatures
require fewer leading spins to be pinned.

Now we present a simple mean ?eld theory for some of these e,ects. Let us consider
the BA network with the characteristic constant m and the corresponding Ising model
with the ferromagnetic coupling constant J=1. The probability that a node has a degree
k is given by P(k) � Ak−3 when k�m and P(k) = 0 when k ¡m. For large networks
(N → ∞) the normalization constant equals A � 2m2. In the mean ?eld approximation
(MFA) we can simplify interactions among each group of spins with a ?xed value
of k by the e,ective ?eld kM , where M is the mean magnetization (per one spin). It
follows that

M =
∫
P(k) tanh(�Mk) dk
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Fig. 1. (a) M versus temperature for 2 million nodes and various m, for 2506 t6 500 (shorter times t
were used far below TC). (For m= 1 even 60 million nodes were simulated.) (b) E,ective TC versus m+N
for m = 5 and various N , averaged over up to 1000 samples.
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Fig. 2. Correlation between the number of neighbours and the local magnetization 〈Si〉 for one network of
N = 4000 at T = 2, 9 and 16. Average over 250¡t6 500 iterations. The curve is the mean ?eld prediction
tanh(�kM). N = 2; 000; 000 gives similar e,ects.

(� = 1=T ). This is a transcendental algebraic equation for M (T ). It is easy to ?nd
analytically the critical temperature TC that corresponds to the case when left-hand side
(lhs) and right-hand side (rhs) are tangent at M = 0. Di,erentiating both sides over M
and putting M = 0 we get 1 = A

∫∞
m �k−2 dk; thus TC = 2m: The result can be written

as TC=〈k〉 � 2m= the mean degree of the node. This is the typical MFA result. Fig. 1
shows it to be correct in order of magnitude and in its increase with increasing m.
But the MFA does not describe the logarithmic size e,ect on TC(N ), due perhaps to
exponentially rare and small regions of densely connected spins [9]. A di,erent mean
?eld theory by G. Bianconi (private communication), and S.N. Dorogovtsev et al. [10],
gave the log(N ) dependence of Fig. 1b.

Knowing the mean magnetization M (T ) one can calculate the correlation �(k) of
local magnetization to the spin degree k. In fact, in MFA we can write �(k) =
tanh[�kM (�)]. It follows that for all temperatures T ¡TC this dependence is a univer-
sal function of u= �kM (�). This prediction is consistent with Fig. 2.

The e,ect of pinning of the most important spins (Fig. 3) can be also described
analytically and it follows that there occurs a discontinuous phase transition from the
“spin up” phase to the “spin down” phase by a well-de?ned critical number of pinned
spins.
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Summed magnetizations, 100 networks, T = 18 (+) and 20 (x), N = 30,000, time interval 50

Fig. 3. Total magnetization versus time, summed over 100 networks of N = 30; 000 when after every 50
iterations the most-connected free spin is forced down permanently. For lower temperatures, the sign change
of the magnetization happens later. N = 2; 000; 000 gives similar e,ects.

Pinning one spin of degree k to the state S = −1 is equivalent in MFA to lowering
the mean magnetization by �(k)=N and introducing to the system the external magnetic
?eld of the magnitude J = 1 that is oriented “down”. This ?eld is felt only by k other
spins thus its mean value for the whole system equals b(k) =−k=N . If we pin j of the
most connected spins, then it means that we pin all spins of the degree k ¿� where

j = NA
∫ ∞

�
k−3 dk :

It follows that we decrease the mean magnetization (per one spin) by

�M (j) = A
∫ ∞

�
(�(k) + 1)k−3 dk � 2j

N
;

where we have assumed that all pinned spins were completely ordered before pinning,
�(k) = 1. The e,ective internal ?eld B(j) acting in the system from the pinned spins
can be calculated as

B(j) = −A
∫ ∞

�
�(k)k−2 dk � −2m

√
j=N :

It is important to stress that �M ˙ 1=N but B(j) ˙
√

1=N and this internal ?eld
causes much larger decrease of magnetization PM than the direct e,ect of pinning.
For small j we have PM (j) = �B(j), where � is the system initial susceptibility. In
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MFA, it can be calculated as the mean value of the derivative of local magnetization
�(k) over the ?eld B(j) and it equals to

� =
2m2

T

∫ ∞

m

dk

k3 cosh2(�Mk)
:

The last integral cannot be calculated analytically. Pinning several spins means inGu-
encing the system by a large internal ?eld B(j) that can even cause a Gip of the total
magnetization. The value for the minimal Gipping ?eld B∗ can be obtained from the
equation

M∗ = A
∫ ∞

m
k−3 tanh[�(M∗k + B∗)] dk

and the corresponding tangency relation at the critical point M∗:

1 = �A
∫ ∞

m
k−2 cosh−2[�(M∗k + B∗)] dk :

The above equations imply conditions for B∗ and M∗. After some algebra one can ?nd
the following relation between B∗ and M∗:

B∗ = −mM∗ + T arctanh(M∗=2) :

Combining the last result with the relation for B(j), we get the following equation for
the minimal number j∗ of pinned spins needed to invert the system magnetization:√

j∗

N
=
M∗

2
− T

2m
arctanh

M∗

2
� (M∗=2)(1 − T=Tc) ;

where the last approximation is valid only for the small M∗ = 0:03 : : : 0:1 of Fig. 3 and
we used the above TC = 2m. This prediction j∗=N ∼ 10−4 : : : 10−3 agrees reasonably
with our simulations.

In summary, we combined the Ising model with the Barab!asi–Albert network and
found that depending on the convincing power one either has a majority opinion or
two equally widespread opposing opinions, i.e., a Curie point.
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