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Abstract. We introduce two models of inclusion hierarchies: random graph hierarchy (RGH) and limited
random graph hierarchy (LRGH). In both models a set of nodes at a given hierarchy level is connected
randomly, as in the Erdős-Rényi random graph, with a fixed average degree equal to a system parameter c.
Clusters of the resulting network are treated as nodes at the next hierarchy level and they are connected
again at this level and so on, until the process cannot continue. In the RGH model we use all clusters,
including those of size 1, when building the next hierarchy level, while in the LRGH model clusters of size 1
stop participating in further steps. We find that in both models the number of nodes at a given hierarchy
level h decreases approximately exponentially with h. The height of the hierarchy H , i.e. the number of
all hierarchy levels, increases logarithmically with the system size N , i.e. with the number of nodes at the
first level. The height H decreases monotonically with the connectivity parameter c in the RGH model
and it reaches a maximum for a certain cmax in the LRGH model. The distribution of separate cluster
sizes in the LRGH model is a power law with an exponent about −1.25. The above results follow from
approximate analytical calculations and have been confirmed by numerical simulations.

1 Introduction

Hierarchical structures can be found in many forms in
many real world systems. Four general classes of hierar-
chical systems can be distinguished [1] – order, control,
inclusion and level hierarchies. An order hierarchy is a set
of units ordered by an internal variable attributed to these
units, e.g. a company income, a book size or a simple social
rank [2]. Control hierarchies describe control relations such
as boss-subordinate [3] or leader-followers [4] and are usu-
ally represented by directed graphs [5,6]. Inclusion hierar-
chies [7–9] correspond to stuctures where a unit of a higher
level includes several units of a lower level, e.g. a university
includes faculties or an army division includes regiments.
Level hierarchies can be treated as a special class of in-
clusion hierarchies when interacting elements of a lower
level collectively form elements of a higher level and the
higher level elements possess some emergent properties
absent at the lower level [10]. Examples are cells forming
tissues and organs or macromolecules forming internal cell
structures. The concept of inclusion and level hierarchies
is close to the community structure of networks [11,12]
that is defined through a network topology, and to re-
cently studied networks of networks [13–15]. The original
community structure measures considered a simple divi-

a e-mail: jholyst@if.pw.edu.pl

sion of nodes into disjoint communities. This has changed,
as more recent works focus on overlapping communities,
that are able to form an inclusion hierarchy [9,16]. In fact,
Clauset et al. [9] introduce a very general model of a hi-
erarchical graph. Their model is descriptive in nature, as
it does not determine connection probabilities across the
hierarchy. Hierarchical community organization has been
also considered for several dynamical models [17–19]. In
this paper, we introduce two models of inclusion hierar-
chies, with a specified mechanism of hierarchy organiza-
tion. The models are not strictly network models but can
be interpreted in terms of nested community structures,
or in terms of networks of networks featuring a nested hi-
erarchical topology. While the first investigated model is
straightforward, the second one shows a nontrivial depen-
dence of the total number of levels on system parameters.
In the following sections we define the RGH and LRGH
models and derive their basic properties, mainly the total
number of hierarchy levels that exist in the system.

2 Random graph hierarchy

We propose a hierarchical system consisting of N nodes
which are organized into many nested clusters. Our idea
is to recursively repeat the connection procedure of the
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well-known Erdős-Rényi graph and treat connected com-
ponents created at each level as nodes at a next level. We
will refer to the connected components as clusters, so two
nodes will belong to the same cluster if a path exists be-
tween them. While the annealed Erdős-Rényi graph does
not possess any community structure, in particular real-
izations the separate components always exist, especially
below percolation threshold (where 〈k〉 < 1). We rely on
these separate clusters to define the nodes at the next
level, and therefore always use connection densities below
percolation. The algorithm for creating the structure is
following:

1. Link together each pair of nodes with a probability
p0 = c/(N −1). The result is W1 clusters of the hierar-
chical degree h = 1. The nodes belonging to the same
cluster (a path exists between them) are considered as
neighbours, so their mutual degree of neighbourhood
is one.

2. The existing clusters of hierarchical degree h = 1 are
treated as primary-level nodes which are linked to-
gether randomly with a probability p1 = c/(W1 − 1)
per pair. The result is W2 clusters of the hierarchi-
cal degree h = 2, containing sets of clusters of degree
h = 1. If nodes i and j belong to the same cluster with
the hierarchical degree h = 2, but to different clusters
of the hierarchical degree h = 1, their mutual degree
of neighbourhood is two.

3. Repeat step 2 for next hierarchy levels h = 3, 4, 5 . . .
until only one cluster remains. The total number of
iterations H required is proportional to the logarithm
of the system size H ∼ ln N .

The model possesses only two parameters: N – the to-
tal number of nodes and c – the mean number of connec-
tions per node created at each level. Note that making the
parameter c constant instead of connection probability p
known from E-R model means that despite a changing
number of clusters Wh, the connection density is always
the same in relation to the percolation threshold (〈k〉 = 1
in random graphs) at each level h. The resulting struc-
ture will be called Random Graph Hierarchy (RGH). The
average number of clusters Wh of hierarchical degree h de-
creases as Wh = Nαh, where α = α(c) = 1 − c/2. This is
due to the average number of clusters in a random graph
of N nodes equal to nc = N(1 − c/2) + O(1) (this is true
only below the percolation threshold, i.e. for c < 1) [20].

The total number of hierarchies H fulfills the following
equation:

WH = N
(

1 − c

2

)H

= 1. (1)

It follows that

H = − ln N

ln(1 − c/2)
. (2)

Equation (2) is only an approximation since it is based
on the average number of clusters in E-R graph which is
correct only for large N what is not fulfilled in the case
of h close to H .

Fig. 1. The building process of the random graph hierarchy
(RGH). During each step nodes/clusters are randomly con-
nected (as in the Erdős-Rényi random graph) to form clusters.
The clusters are connected in the next step in the same way
and so on. The process continues until the whole system is
aggregated in a single cluster. The coloured ellipses show the
clusters (red for level 1, green for level 2 and blue for level 3).
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Fig. 2. The highest level of hierarchy H as a function of the
system size N (left picture, c = 0.8, averaged over 500 realiza-
tions) and average degree c (right picture, N = 5000, averaged
over 500 realizations) for RGH model. The lines are analytical
results (Eq. (2)). Error bars are smaller than symbol sizes.

Note that while the resulting structure is a graph at
each hierarchy level, it does not possess well-defined links
as a whole, since higher-level links are between clusters,
not between individual nodes.

3 Limited random graph hierarchy

In the RGH model each node/cluster is given many
chances to join other elements. Even if an element of
level h does not connect with any other, it advances to
level h + 1 as a cluster of the size one. We present an
alternative approach in the Limited Random Graph Hi-
erarchy (LRGH) where only clusters that have merged at
the level h can participate in the merging at the level h+1.
Otherwise they drop out and do not participate in further
merging. In effect the procedure of the cluster growth is
limited only to the groups which are continually develop-
ing. Aside from dropping out nodes/clusters that do not
find partners, the procedure is the same as for the RGH
model and has the same two parameters: N and c. The
procedure is as follows:

1. Link together each pair of nodes with the probability
p0 = c/(N − 1). The result is W1 clusters (of size at
least two) which advance to the second step. Unlinked
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Fig. 3. Multilevel growth of clusters in the LRGH model.
The nodes/clusters at every level are randomly connected
(as in Erdős-Rényi random graph) to form clusters. The
nodes/clusters which did not connect and therefore remain
alone become inactive and are exempt from further dynamics.
The clusters formed from the successful connections remain ac-
tive and are connected in the next step in the same way. The
process continues until no active clusters remain. The coloured
ellipses show the clusters (red for level 1, green for level 2 and
blue for level 3).

nodes are the clusters of the size one and they do not
participate in the further steps (and they are not in-
cluded in W1).

2. Merge together each pair of clusters with the proba-
bility p1 = c/(W1−1). The result of merging two clus-
ters is a new cluster which contains these sub-clusters
and whose size is the sum of the sizes of the merged
clusters. The new clusters (W2) advance to the next
step. The clusters which did not merge during this step
do not advance and stop growing (and they are not in-
cluded in W2).

3. Repeat the step 2 for the clusters of successive levels
until all clusters stop growing.

Similarly to RGH model, the number of clusters on given
hierarchy level Wh and the maximum hierarchy level H
can be calculated analytically. At the beginning we find
the average number of clusters Wh of level h (which ad-
vanced to h+ 1-th step, obviously W0 = N). Consider the
first step of the above procedure. As previously noted in
Section 2, the average number of clusters resulting from
the linking together each pair of W0 nodes with the proba-
bility p0 = c/(W0−1) is n0 = W0(1−c/2), including clus-
ters of the size one (single, unlinked nodes). The average
number of unlinked nodes R0 is given by the probability
of W0 − 1 failures to link multiplied by the number of all
nodes:

R0 = W0

(
1 − c

W0 − 1

)W0−1

, (3)

therefore the average number of clusters W1 which ad-
vanced is the difference between n0 and R0:

W1 = n0−R0 = W0

[
1 − c

2
−
(

1 − c

W0 − 1

)W0−1
]

, (4)

leading to a recursive equation for Wh:

Wh = Wh−1

[
1 − c

2
−
(

1 − c

Wh−1 − 1

)Wh−1−1
]

. (5)

Since equation (5) does not depend explicitly on h, we as-
sume that Wh−1 is large enough to use the approximation

(
1 − c

Wh−1 − 1

)Wh−1−1

≈ e−c, (6)

which is independent from h and Wh. The accuracy of
this approximation depends mainly on Wh−1, the error
not exceeding 10% when Wh−1 ≥ 7. In practice, for all
lower hierarchy levels with their numerous clusters, it is
a very good approximation, while introducing some error
at the top level. Since the number of clusters at the last
level H − 1, where connections still appear, is around 7
or higher, the error of equation (6) is at most 10%, but it
causes upwards to 20% discrepancy in the following equa-
tion (7). Note that this error causes a systematic under-
estimation of WH (and in consequence a corresponding
underestimation of H). The error is smaller for smaller c
and is independent of the system size N and the number
of hierarchy levels H .

Using the approximation (Eq. (6)) we obtain

Wh = N
(

1 − c

2
− e−c

)h

, (7)

which describes the dependence of number of active clus-
ters on the hierarchy level h. We can invert this equation,
calculating the hierarchy level h of a system with Wh clus-
ters. Then, using it for h = H we can write

H(c, N) =
ln (〈WH〉/N)

ln
(
1 − c

2 − e−c
) . (8)

Let us first assume that 〈WH〉 = 1, meaning that the
last hierarchy always consists of a single cluster merged
in the previous step. If we do so, then equation (8) de-
pends on the value of c only through the argument of the
logarithm, and possesses a maximum for the argument
cmax = ln 2 ≈ 0.6931. While this prediction reproduces
the general shape of the relation correctly, both the val-
ues and the position of the maximum are underestimated.
Using a different terminating constant than 〈WH〉 = 1
changes the height, but the position of the maximum re-
mains the same.

To get a better approximation, it is necessary to find
a more precise value of 〈WH〉. The procedure of LRGH
creation stops when none of the existing clusters connects
with any other. The probability that it happens depends
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on the number of participating clusters W and the con-
stant c:

Pc(W, c) =
(

1 − c

W − 1

)W (W−1)
2

. (9)

This probability is conditional on the number of clusters
W present in the system. The probability that the system
passes through a state with a given number of clusters
W is equal to the probability that it has not finished the
dynamics at earlier steps. However, since the system does
not visit each number of clusters W in order, but visits
only certain values during a single realization, we approxi-
mate it by treating it as if the system visits all of them, but
spends less than one step in each. Effectively we consider h
as the time, since one procedure step changes it by 1 each
time. Since the system spends less time in each W , the
probability Pc of terminating the process should be mul-
tiplied by the time spent at a given value of W . It can
be approximated as the inverse of the absolute value of
derivative dW/dh. Using equation (7) for W (h), we can
write the conditional probability of terminating the pro-
cess with W clusters scaled by the time spent with W
clusters during the evolution

Pct(W, c) =
∣∣∣∣ dh

dW

∣∣∣∣Pc(W, c) =
−Pc(W, c)

W ln(1 − c/2 − e−c)
. (10)

Now the probability to complete the dynamics at a given
number of clusters W is:

Pa(W, c) = Pct(W, c)
N∏

k=W+1

(1 − Pct(k, c)). (11)

Unfortunately this probability is not normalized, since our
approach does not describe the behaviour of the system
correctly after it arrives at W = 1. We therefore treat it
as the probability to terminate before W = 1 (it is always
lower than 1). If the system manages to merge down to
one cluster, then the process stops, as any further merg-
ing is impossible. We therefore assume that the missing
probability is the chance to stop at W = 1. This leads to
the final formula for the average number of clusters at the
hierarchy H

〈WH〉 =
N∑

W=2

WPa(W, c) +

(
1 −

N∑
W=2

Pa(W, c)

)
, (12)

where the first term is average of W over probabilities
Pa(W, c) for W > 1, while the second term is the prob-
ability to stop at W = 1. Because of the high algebraic
complexity, we have not managed to express equation (12)
in a simple analytical form, and instead we have calculated
this value numerically. We have observed that while the
products and series presented by equations (12) and (11)
formally depend on N , in practice the terms quickly be-
come very small for large W and 〈WH〉 attains a limit
value independent of N . We used only the first 100 terms
(as if N = 100) in our study, which for c > 0.1 produced
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Fig. 4. The average number of clusters observed at the fi-
nal level H . The crosses are numerical values averaged over
2000 realizations (N = 5000). The line is an analytical result
calculated using equation (12). Error bars are smaller than
symbol sizes.
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Fig. 5. The highest level of hierarchy H as a function of the
system size N (left picture, c = 0.8, averaged over 500 real-
izations) and the connectivity c (right picture, N = 5000, av-
eraged over 2000 realizations) for LRGH model. The red lines
are analytical results (combined Eqs. (8) and (12)), while the
blue line (right picture) shows equation (8) under assumption
〈WH〉 = 1. Error bars are smaller than symbol sizes.

an error no larger than 0.05 that quickly decreases with c
(for c = 0.5 it is less than 10−10). Figure 4 shows that
despite many approximations and assumptions used, the
value of 〈WH〉 calculated this way is very close to what is
observed during numerical simulations.

Putting equation (12) into equation (8), we obtain the
value H(c, N) that reproduces the numerical results with
a greater accuracy than the value H(c, N) based on the
assumption 〈WH〉 = 1, as seen in Figure 5. However the
discrepancies with the numerical results are still visible.
The numerical maximum of H(c) is slightly shifted to-
wards c = 1, i.e. for N = 5000 it is about 0.8, while the
analytical value cmax(N = 5000) = 0.7631. These dif-
ferences originate from two sources: we take the average
value of WH (although this is a very good approximation,
as seen in Fig. 4) and we use the approximation shown
in equation (6) which introduces a substantial error for
the last hierarchies. The position of the maximum cmax,
due to 〈WH〉 depending on c, now depends weakly on the
system size N (i.e. cmax(N = 100) = 0.8178).

Unlike in the RGH model, where the clusters merge
until only a single one is left at the level H , in the LRGH

http://www.epj.org


Eur. Phys. J. B (2015) 88: 266 Page 5 of 6

10-1

100

101

102

103

100 101 102 103

N
(S

)

S
Fig. 6. The distribution of cluster sizes for LRGH model (c =
0.8, N = 5000). Circles, triangles and squares are examples of
single realizations. The black solid line shows the distribution
averaged over 1000 realizations. The gray straight line is a
power-law with the exponent α = −1.25, just for reference.

model clusters stop participating in further merging at
the moment when they fail to form any connection in a
given step. This means that the final structure consists of
many disconnected clusters. We investigated the distribu-
tion of these clusters and observed a dependence similar
to a power law (Fig. 6). Due to a relatively small expo-
nent (α ≈ −1.25) in a single realization of the system
the power-law tail is disrupted by existence of the largest
cluster. This behavior is seen in Figure 6, where single re-
alizations feature one or few very large clusters that may
dominate the whole system, and the peaks correspond-
ing to these clusters are often clearly separated from the
quasi-continuous part of the distribution.

4 Conclusions

We have introduced two models of hierarchical structures,
based on random connections between the nodes (as in
Erdős-Rényi graphs) at different hierarchy levels h, with
a constant mean node degree independent from h. Both
models show an approximately exponential decrease of the
number of elements at successive levels, and possess a well
defined maximum hierarchy level H (the height of the hi-
erarchy). The height H is proportional to the logarithm
of the number of nodes N . It decays monotonicaly with
the connectivity parameter c in the Random Graph Hier-
archy model, but possesses a maximum as a function of
this parameter for the Limited Random Graph Hierarchy
model. The obtained analytical results are supported by
numerical simulations.

The models can be used for investigation of opinion
dynamics or other collective processes [21] on hierarchi-
cal structures. Since many real social systems are hier-
archical [1] the models may offer a simple representation
for them. While random Erdős-Rényi network is a poor
model for social systems, our model relies on connected
component distributions, hence the properties of the con-

nection topology are of lesser importance. Other mecha-
nisms of generating links could be used, but the network
they create must not be percolated. This precludes using
algorithms like preferential attachment found in Barabasi-
Albert model, since they always produce single connected
component, but allows some others, such as configuration
model or hidden variables models with appropriate param-
eters. Since we believe the exact connection topology to
be of lesser importance, we have chosen to use the simple
random connections.

The proposed models could be also considered as
reference models for investigations of inclusion hierar-
chies [1,7–9]. We expect they may be useful for cases
where a system self-organizes into a hierarchy, example
being countries, which can arise from settlements joining
into progressively larger regional powers or corporations
arising from progressive mergers of smaller companies.
Our models generate structures that possess several levels
of hierarchical organization. While some real systems are
shallow, with only one or two levels, in many of them sev-
eral levels could be distinguished, such as labs, divisions,
faculties and finally universities or townships, counties,
individual states and the whole of United States. Of par-
ticular interest may be the fact that in the LRGH model
the final system can consist of clusters that stopped grow-
ing at various levels. They can represent different organi-
zational complexity, similar to countries that depending
on their size (but not only) could have different depths
of organization, however they are usually still considered
same-level entities.
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