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• Multiple paths reduce time it takes to spread.
• We find approximations for mean times and covariances as if paths or their links were equally probable.
• These approximations result in 1.6 times higher accuracy than single path approximation.
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a b s t r a c t

We investigate the problem of locating the source of diffusion in complex networks
without complete knowledge of nodes’ states. Some currently knownmethods assume the
information travels via a single, shortest path, which by assumption is the fastest way. We
show that such amethod leads to the overestimation of propagation time for synthetic and
real networks,wheremultiple shortest paths aswell as longer paths between vertices exist.
We propose a new method of source estimation based on maximum likelihood principle,
that takes into account existence multiple shortest paths. It shows up to 1.6 times higher
accuracy in synthetic and real networks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Understanding how information propagates in a system is an important field of study in complex networks. The
information can be of a various nature - e.g. it could be a virus [1] or a tweet [2]. The main branch of studying epidemics
and diffusion is about modelling the propagation itself [3–5]. We consider a reverse problem — locating the source, i.e. ‘‘the
patient zero’’. That reverse problem has already been approached before. Shah and Zaman introduced a measure of rumour
centrality defined as the number of distinct ways a rumour can spread from a given node, thus providing with a maximum
likelihood estimator of a rumour’s source. That method, however, requires the full knowledge of both topology of a network
and states of all vertices [6]. Pinto, Thiran, Vetterli (PTV), on the other hand, while still requiring full knowledge of network’s
topology, provide a solutionwith information about the states of only some of the nodes needed [7]. An alternative approach
to PTV that retains the limited knowledge assumptions has been introduced by Shen et al. which provides the source
estimator via minimizing the variance of a time vector of a backwards spread signal [8]. More recent research shows that
there are possible solutions for locating a source in temporal networks [9] and that an efficient placement of observers is not
a trivial task because different common strategies do not significantly differ in resulting accuracy [10]. The aforementioned
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Fig. 1. A schematic illustration of the problem. Vertex S is the source we are looking for. Nodes Oi are our observers. One can clearly see that there are
three shortest topological paths between the source and vertex O1 . Moreover those paths are correlated, i.e. there are edges that are common for several
shortest paths between S and O1 . What is more, since delays on edges are random variables a shorter path is not always faster, e.g. in the illustration the
shortest path between S and O2 is not the fastest one and so the signal travels via a topologically longer route.

PTVmethodhas also been recently improved by Paluch et al. in both accuracy (for scale-free networks) and computation time
by limiting observers to closest ones instead of using all, and using gradient to select nodes that have likelihood calculated
at all [11].

2. Set up

Consider an arbitrary graph that can represent cities connected via highways or friends on Facebook etc. One of the nodes
sends some information or a signal to its neighbours. Then those newly ‘‘infected’’ vertices keep passing themessage on until
all nodes receive it. We can either assume that the signal is transmitted to node’s neighbours with a certain probability each
time step (SI model) or that it is always transmitted with a random delay from an arbitrary distribution (Gaussian in our
study). We assume that we know the topology of the network as well as the distribution from which the delays on the links
are sampled. Additionally some subset of all vertices provide us information about at what time they received the signal (we
shall call those nodes observers). Our goal is to locate the source of the signal (i.e. the node that generated it).

PTV algorithm assumes that information spreads through shortest paths and while it is intuitively satisfying it is also just
an approximation. In the actual process, there may exist multiple paths of propagation, not only a single one (see Fig. 1).
Assuming that on each edge we have an unknown delay from a known probability distribution and that this distribution is
Gaussian (as assumed by Pinto et al.) we can compare PTV’s expected time of information’s traversal between two nodes
to the simulated one. Such comparison is shown at Fig. 2. There are two reasons for the discrepancy between PTV and the
simulation. First, there can be more than one shortest path (and usually this is the case in non-tree networks). Since the
information travels via fastest path, every additional parallel path gives the process another chance for the information to
arrive quickly. Instead of distribution of single path traversal time, we have distribution of minimum time from among
several different path times. Even if mean for each path is the same, the minimum among them has a different distribution
than a single path, with a smaller mean value. Second reason is the existence of independent longer paths, that may end
up faster than all shortest paths by chance. Thus existence of these additional chances for quick traversal (even if much less
probable than shortest paths) still decrease mean time. If the variance of the times compared to mean is small, contribution
of longer paths is negligible, but increases as variance becomes larger. We have focused on the first of the two reasons of
discrepancy and developed a new method based on maximum likelihood, centred around existence of multiple shortest
paths. Similar to PTV, we assume normal distributions of delays on edges, and assume that resulting distribution of arrival
at different observers is still multivariate normal distribution, or at least it can be approximated as such. We have therefore
to find (i) the mean times of traversal between source and all observers, (ii) the covariance matrix of these times.

Let us assume we have a general graph and each edge has a delay sampled from a known Gaussian distribution N(µ, σ 2).
Particular delays shall remain unknown to the source locating algorithm. Some randomly chosen subset of nodes (observers)
register time of reception as sum of weights along the fastest path between source of information and node in question. The
maximum likelihood for multivariate normal distribution of times would be:

ŝ = argmax
s∈G

1
√
T

n√
|Σ s|

exp
(
−

1
2 (ddd − µµµs)TΣ−1

s (ddd − µµµs)
)

(1)

where ddd is observed delay vector (each element corresponds to a time at which given observer received the information
relatively to the reference observer), T = 2π , µµµs is a deterministic delay vector (each element is an expected time of
transmission relative to reference observer) if s is the source,Σ s is a covariance matrix assuming source s, ŝ is our estimated
source and G is the whole graph. PTV assumes information always spreads along single set of shortest paths, that form a
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Fig. 2. Signal’s propagation time between two nodes in a network as a function of number of shortest paths connecting those nodes. Simulations were
conducted on Barabási–Albert graph with 100 nodes, with propagation ratio µ

σ
= 4, two nodes were chosen so that their shortest paths length is set to

three edges. Line labelled simulation is the real, i.e. experimental time whereas PTV is time assumed in that method (shortest path length times µ), EPP/EPL
is result of taking into account up to two shortest paths (that is what we use for our modifications) see Eq. (13) and I.I.D is what we receive when taking all
shortest paths into consideration yet assuming their uncorrelated (do not have common edges).

breadth-first search tree (BFS) rooted at a candidate node s. Deterministic delaysµµµs in such case are equal to µ ∗ LLLs, where
LLLs are lengths of the shortest (and the only existing) paths between source s and observers. Covariance matrix elements are
intersections of shortest path between two given observers to the reference observer (and simply lengths of paths on the
diagonal) multiplied by σ 2. We shall reject the BFS approach and deal with whole sets of shortest paths, evaluating µµµs and
Σ differently.

3. Independent paths

Let all paths between twonodes be represented byGaussian randomvariablesX1, X2, . . . , Xn with known joint probability
distribution

f (XXX) =
exp

(
−

1
2 (XXX − µµµ)T Σ−1 (XXX − µµµ)

)
√
T n |Σ |

(2)

WhereXXX = [X1, X2, . . . , Xn],µµµ is mean values vector andΣ is a covariance matrix. We would love to have an expression for
an expected value of propagation time - E[Xmin] = E[min(XXX)] = E[min(X1, X2, . . . , Xn)]. The probability density function is
given by

φ(Xmin) = −
d

dXmin
P(X1, X2, . . . , Xn > Xmin) = (3)

= −
d

dXmin

∫
∞

Xmin

. . .

∫
∞

Xmin

f (XXX)dX1dX2 . . . dXn

then the expected value Xmin

E[Xmin] =

∫
∞

−∞

xφ(x)dx (4)

One can clearly see this is far from a trivial task. We are forced to make some simplifications. One possible approach is to
assume there are no correlations amongst Xi, i.e. we deal with independently, identically distributed variables (I.I.D):

8Xmin (x) = P(Xmin ≤ x) = 1 − P(min(X1, X2, . . . , Xn) > x) (5)

where 8Xmin (x) is the cumulative distribution function of Xmin, also

min(X1, X2, . . . , Xn) > x ⇐⇒ ∀i=1,2,...,n Xi > x (6)

then

8Xmin (x) = 1 − P(X1 > x)P(X2 > x) . . . P(Xn > x) = 1 − P(X1 > x)n = (7)

= 1 − [1 − P(X1 ≤ x)]n = 1 −
[
1 − 8X1 (x)

]n
where 8X1 is given by

8X1 (x) =
1
2

(
1 + erf

(
x − µ
√
2σ

))
(8)
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The probability density function of Xmin is then given by

φXmin (x) =
d8Xmin (x)

dx
(9)

After some working out we conclude that

E[Xmin] =

∫
∞

−∞

xφXmin (x)dx = (10)

=

∫
∞

−∞

xn exp
(
−

(x−µ)2

2σ2

)
√
T σ

[
1 −

1
2

(
1 + erf

(
x − µ
√
2σ

))]n−1

dx

Alternatively we can also take into account that negative delays are non-existent in vast majority of real world scenarios
(i.e. x ≥ 0) and then we have

8X1 (x) =

erf
(

x−µ
√
2σ

)
+ erf

(
µ

√
2σ

)
1 + erf

(
µ

√
2σ

) (11)
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∫
∞
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)
+ erf

(
µ

√
2σ

)
1 + erf

(
µ

√
2σ

)
⎤⎦n−1

dx (12)

Ignoring that, however, can be justified if propagation ratio - µ

σ
is sufficiently large (due to the nature of error function).

Comparison of the above approximation (10) with simulation, PTV and alternative approach chosen for ourmodifications
is shown at Fig. 2. Results are for propagation ratio µ

σ
= 4 and one could say they are promising, however, for large values of

σ or for strongly correlated paths the results are less satisfying. While that provides a vast improvement over original PTV
approach the nature of the integral is such that it takes substantially more time to calculate and so its benefits might not
necessarily exceed its costs.

4. Multiple correlated paths

Since establishing general expression for the expected value of minimum distribution of an ensemble of n shortest paths
is a non-trivial task, even with I.I.D approximation described above, we shall settle for a known analytical formula in the
case of n = 2 derived in [12].

Let Y = min(X1, X2) where X1, X2 are known Gaussian distributions such that E[Xi] = µi, E[X2
i ] − E[Xi]

2
= σi, and 8, φ

are respectively the cumulative distribution function and probability d.f. of the standard normal distribution. Then:

E[Y ] = µ18
(µ2 − µ1

θ

)
+ µ28

(µ1 − µ2

θ

)
− θφ

(µ2 − µ1

θ

)
(13)

E[Y 2
] = (σ 2

1 + µ2
1)8

(µ2 − µ1

θ

)
+ (σ 2

2 + µ2
2)8

(µ1 − µ2

θ

)
− (µ1 + µ2)θφ

(µ2 − µ1

θ

)
(14)

θ =

√
σ 2
1 + σ 2

2 − 2ρσ1σ2 (15)

Where ρ is a correlation coefficient between the distributions X1, X2 that in case of paths we define as number of common
edges between the paths R1, R2 normalized by the length L of the path:

ρ =
R1 ∩ R2

L
(16)

Now evaluate elements ofµµµ using (13) if n > 1 else as in PTV. In case there are more than two shortest paths apply (13) for
two least correlated ones (that is thosewho have the smallest number of common edges). Result of such approach compared
with PTV and ‘‘real’’ times in simulation is presented at Fig. 2. As one can clearly see it is still far from truth yet significantly
closer than PTV.

4.1. Equiprobable paths (EPP)

Since we have rejected BFS trees we cannot calculate covariance matrices as before. A natural generalization of PTV’s
formula is to use expected value of covariance between all shortest paths from node oi+1 to reference observer o1 and all
shortest paths between oj+1 and o1 while on diagonal elements instead of σ 2

∗ L we calculate the variance of minimum
distribution if n > 1 (Fig. 3). I.e.: Let ♥ represent a set of paths each treated as random variable:

♥i+1 := R1(o1, oi+1), R2(o1, oi+1), . . . , Rn(o1, oi+1) (17)
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Fig. 3. Correlations between paths between supposed source S and observers O1 (red paths) and O2 (green paths). Approach EPP assumes all paths are
equally probable and calculates expected overlap between all pairs of red–green paths (out of six pairs, one has overlap 1, one has overlap 2). Approach
EPL assumes all links are equally probable to be used by real spreading and calculates overlap between union of all red and union of all green paths (two
links), normalized by union of all paths (eleven links). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

where Ri(x, y) is an i − th path between vertices x and y, then:

6i,j =

{
σ 2 ∑n

k=1
∑m

l=1 pk,l · |Rk(o1, oi+1) ∩ Rl(o1, oj+1)| i ̸= j
minσ2 (♥i+1) = E[Y 2

] − E[Y ]
2 i = j (18)

Where pk,l is a probability that k − th path from the set of paths connecting nodes o1, oi+1 and l − th path from the
set connecting the other observer with reference observer (i.e. o1, oj+1) will be the fastest routes, see Fig. 3 for details.
Unfortunately those probabilities are non-trivial to evaluate so we assume all paths to be equally probable (which is true
only when there are no intersection between them). With this assumption, we obtain

6i,j =

{
σ2

n·m

∑n
k=1

∑m
l=1 |Rk(o1, oi+1) ∩ Rl(o1, oj+1)| i ̸= j

minσ2 (♥i+1) i = j
(19)

4.2. Equiprobable links (EPL)

Alternatively one can use a product of Jaccard Index [13] (Fig. 3) and geometricmean of variances of sets of paths, namely:

6i,j =
|{ei} ∩ {ej}|
|{ei} ∪ {ej}|

·
√
min
σ2

(♥i+1) · min
σ2

(♥j+1) (20)

where {ei} is a set of edges of all shortest paths connecting node iwith the reference observer. Intuitively one could say that
using intersection over union of sets of edges represents treating each edge as equally probable (instead of treating each path
equally probable like in previous approach). The choice of geometricmean is arbitrary and arithmeticmean produces similar
results.

5. Results

Presentedmethod has been tested on synthetic graphs and real network.We used two synthetic graphs: Barabási–Albert
(BA) and Erdős–Rényi (ER) with size N = 100 and average node degree ⟨k⟩ = 6 in each case. Since estimator in both
methods can produce two or more nodes with the same maximum score the success of algorithm is registered when the
actual source is within the list of those candidates with maximum likelihood. Results are shown at Fig. 4. One can clearly see
a vast improvement in accuracy of the method using our proposed adjustments with the difference between EPP and EPL
being barely noticeable yet still consistently in favour of approach EPP.

We have also conducted tests on a real network: ego-facebook with N = 4039 [14]. After 133 simulations at observers’
density d = 10% EPL successfully located the source 33 (25%) times while PTV and EPP both scored 21 (16%) (Fig. 5). In this
case the EPP modification performed worse than EPL, on the contrary to the case of synthetic networks. The reason for that
maybe high clustering coefficient of the real networkwhile ER and BAmodels are known to not reproduce that characteristic.
A high clustering coefficient naturally leads tomore correlations betweenpaths and thosemakeour approximation of equally
probable paths in approach EPP not sustainable.

Contingencymatrices for a PTV, EPP, EPLmethods are presented at Fig. 6. We see that the probability of agreement of any
pair of those threemethods in successful source location is much higher than in the case theywere completely independent.
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Fig. 4. Improved accuracy of source detection measured as a function of observers’ density for original PTV method and our modifications. Simulations
where conducted on (a) Barabási–Albert (BA) and (b) Erdős–Rényi (ER) graph. Both with mean node degree ⟨k⟩ = 6 and network size N = 100. We have
conducted 100 simulations for each point on those plots.

Fig. 5. Improved accuracy on real life network. The simulations were conducted on the ego-facebook graph with original PTV method and proposed
modifications — EPP and EPL. While PTV and EPP have successfully detected the epidemic source 16% (21/133) of the time the EPL approach has scored
25% (33/133).

Fig. 6. Contingencymatrices. 0means the algorithm failed to locate the source, 1means it succeeded. The first number of the label is the count of appropriate
events while the second is the expected based on methods’ performance and that they are independent. Colours are applied according to the fractions of
the aforementioned numbers.

6. Computational complexity

Pinto et al. report that the computational time in their method scales with network size N as Nα where for arbitrary
graphs α = 3. In our implementation of PTV we have a reasonably close result of α = 3.21. Tests were conducted on
a Barabási–Albert graph with observers’ density d = 0.1. Our own modifications seem to slightly improve scalability,
i.e. αEPP = 3.19, αEPL = 3.12. However, both EPP and EPL bring significant initial costs resulting in overall computation time
to be significantly higher than original PTV’s. See Fig. 7 for details. The nature of our modifications also makes theoretical
predictions of scalability much harder to acquire. Although in BA example they seem to follow Nα fit, they heavily depend
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Fig. 7. Computation times as a function of network size for original PTV and our modifications. Plot is in logarithmic scale and appropriate linear fitting
has been done. Simulations where conducted on Barabási–Albert graph with observers’ density d = 0.1.

on graph’s density, number of shortest paths and correlations between them. As such it might be advisable to do some
pre-computing when applying EPP/EPL on real networks. If observers are known beforehand and do not change one would
have to build covariance matrix and deterministic delay only once. The only element changing would be the observed delay
vector and all computation is reduced to a vector–matrix–vector multiplication.

7. Conclusions & discussion

We have shown that the approach of breadth-first search (BFS) trees presented by Pinto et al. overestimates propagation
time of a signal. We presented an analysis of why that is, namely there can be more than one shortest paths and also other
paths can also happen to be faster, and those effects are non-negligible. We provide alternatives to BFS that take multiple
paths into account and while requiring more computation time, they significantly improve accuracy of the source detection.
Improvement in accuracy is mostly prominent for artificial networks (BA, ER), however, when tested on a real network
(ego-facebook) there was a visible increase in accuracy (1.6 times higher) with approach EPL while EPP was no worse than
original PTV method. While results of presented methods show a lot of promise there are some obvious paths one can still
undertake to improve the accuracy. Firstly, we would love to have an analytical expression for the minimum distribution of
an arbitrary amount of Gaussian distributions and not only two. Secondly, one could expect that should the probabilities in
EPP variant be known (instead assuming they are all equal) the difference in accuracy between EPP and EPL should increase
in the favour of the former. Thirdly, for arbitrary graphs the proposed variants do not scale as trivially with network size as
original PTV (Nα , α ∈ [3, 4]) for they heavily depend on number of edges, shortest paths and intersections among them thus
an exact expression for that scalability is unknown. For both methods, appropriate pre-computing can cut on time needed
to locate source after observer reports are obtained.
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