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In many social dilemmas, individuals tend to generate a situation with low payoffs
instead of a system optimum (“tragedy of the commons”). Is the routing of traffic
a similar problem? In order to address this question, we present experimental results
on humans playing a route choice game in a computer laboratory, which allow one to
study decision behavior in repeated games beyond the Prisoner’s Dilemma. We will
focus on whether individuals manage to find a cooperative and fair solution compat-
ible with the system-optimal road usage. We find that individuals tend towards a
user equilibrium with equal travel times in the beginning. However, after many iter-
ations, they often establish a coherent oscillatory behavior, as taking turns performs
better than applying pure or mixed strategies. The resulting behavior is fair and com-
patible with system-optimal road usage. In spite of the complex dynamics leading to
coordinated oscillations, we have identified mathematical relationships quantifying the
observed transition process. Our main experimental discoveries for 2- and 4-person
games can be explained with a novel reinforcement learning model for an arbitrary
number of persons, which is based on past experience and trial-and-error behavior.
Gains in the average payoff seem to be an important driving force for the innovation
of time-dependent response patterns, i.e. the evolution of more complex strategies. Our
findings are relevant for decision support systems and routing in traffic or data net-
works.

Keywords: Game theory; reinforcement learning; multi-agent simulation.

1. Introduction

Congestion is a burden of today’s traffic systems, affecting the economic prosper-
ity of modern societies. Yet, the optimal distribution of vehicles over alternative
routes is still a challenging problem and uses scarce resources (street capacity) in
an inefficient way. Route choice is based on interactive, but decentralized individual
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decisions, which cannot be well described by classical utility-based decision mod-
els [27]. Similarto the minority game [16, 39, 43], it is reasonable for different people
to react to the same situation or information in different ways. As a consequence,
individuals tend to develop characteristic response patterns or roles [26]. Thanks to
this differentiation process, individuals learn to coordinate better in the course of
time. However, according to current knowledge, selfish routing does not establish
the system optimum of minimum overall travel times. It rather tends to estab-
lish the Wardrop equilibrium, a special user or Nash equilibrium characterized by
equal travel times on all alternative routes chosen from a certain origin to a given
destination (while routes with longer travel times are not taken) [71].

Since Pigou [53], it has been suggested to resolve the problem of inefficient road
usage by congestion charges, but are they needed? Is the missing establishment of
a system optimum just a problem of varying traffic conditions and changing origin-
destination pairs, which make route-choice decisions comparable to one-shot games?
Or would individuals in an iterated setting of a day-to-day route choice game with
identical conditions spontaneously establish cooperation in order to increase their
returns, as the folk theorem suggests [6]?

How would such a cooperation look? Taking turns could be a suitable solu-
tion [62]. While simple symmetrical cooperation is typically found for the repeated
Prisoner’s Dilemma [2, 3, 44–46, 49, 52, 55, 59, 64, 67, 69], emergent alternating reci-
procity has been recently discovered for the games Leader and Battle of the
Sexes [11].a Note that such coherent oscillations are a time-dependent but deter-
ministic form of individual decision behavior, which can establish a persistent
phase-coordination, while mixed strategies, i.e. statistically varying decisions, can
establish cooperation only by chance or on statistical average. This difference is
particularly important when the number of interacting persons is small, as in the
particular route choice game discussed below.

Note that oscillatory behavior has been found in iterated games before:

• In the rock-paper-scissors game [67], cycles are predicted by the game-dynamical
equations due to unstable stationary solutions [28].

• Oscillations can also result from coordination problems [1, 29, 31, 33], at the cost
of reduced system performance.

• Moreover, blinker strategies may survive in repeated games played by a
mixture of finite automata [5] or result through evolutionary strategies
[11, 15, 16, 38, 39, 42, 43, 74].

However, these oscillation-generating mechanisms are clearly distinguishable from
the establishment of phase-coordinated alternating reciprocity we are interested in
(coherent oscillatory cooperation to reach the system optimum).

Our paper is organized as follows: In Sec. 2, we will formally introduce the route
choice game for N players, including issues like the Wardrop equilibrium [71] and

aSee Fig. 2 for a specification of these games.
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the Braess paradox [10]. Section 3 will focus on the special case of the 2-person
route choice game, compare it with the minority game [1, 15, 16, 38, 39, 42, 43, 74],
and discuss its place in the classification scheme of symmetrical 2 × 2 games. This
section will also reveal some apparent shortcomings of the previous game-theoretical
literature:

• While it is commonly stated that among the 12 ordinally distinct, symmetrical
2 × 2 games [11, 57] only 4 archetypical 2 × 2 games describe a strategical con-
flict (the Prisoner’s Dilemma, the Battle of the Sexes, Chicken, and Leader)
[11, 18, 56], we will show that, for specific payoffs, the route choice game (besides
Deadlock) also represents an interesting strategical conflict, at least for iterated
games.

• The conclusion that conservative driver behavior is best, i.e. it does not pay off
to change routes [7, 65, 66], is restricted to the special case of route-choice games
with a system-optimal user equilibrium.

• It is only half the truth that cooperation in the iterated Prisoner’s Dilemma is
characterized by symmetrical behavior [11]. Phase-coordinated asymmetric reci-
procity is possible as well, as in some other symmetrical 2 × 2 games [11].

New perspectives arise by less restricted specifications of the payoff values.
In Sec. 4, we will discuss empirical results of laboratory experiments with

humans [12, 18, 32]. According to these, reaching a phase-coordinated alternating
state is only one problem. Exploratory behavior and suitable punishment strate-
gies are important to establish asymmetric oscillatory reciprocity as well [11, 20].
Moreover, we will discuss several coefficients characterizing individual behavior and
chances for the establishment of cooperation. In Sec. 5, we will present multi-agent
computer simulations of our observations, based on a novel win-stay, lose-shift
[50, 54] strategy, which is a special kind of reinforcement learning strategy [40].
This approach is based on individual historical experience [13] and, thereby, clearly
differs from the selection of the best-performing strategy in a set of hypotheti-
cal strategies as assumed in studies based on evolutionary or genetical algorithms
[5, 11, 15, 16, 39, 42, 43]. The final section will summarize our results and discuss
their relevance for game theory and possible applications such as data routing
algorithms [35, 72], advanced driver information systems [8, 14, 30, 37, 41, 63, 70, 73],
or road pricing [53].

2. The Route Choice Game

In the following, we will investigate a scenario with two alternative routes between a
certain origin and a given destination, say, between two places or towns A and B (see
Fig. 1). We are interested in the case where both routes have different capacities,
say a freeway and a subordinate or side road. While the freeway is faster when it
is empty, it may be reasonable to use the side road when the freeway is congested.
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Fig. 1. Illustration of the investigated day-to-day route choice scenario. We study the dynamic
decision behavior in a repeated route choice game, where a given destination can be reached from
a given origin via two different routes, a freeway (route 1) and a side road (route 2).

The “success” of taking route i could be measured in terms of its inverse travel
time 1/Ti(Ni) = Vi(Ni)/Li, where Li is the length of route i and Vi(Ni) the aver-
age velocity when Ni of the N drivers have selected route i. One may roughly
approximate the average vehicle speed Vi on route i by the linear relationship [24]

Vi(Ni) = V 0
i

(
1 − Ni(t)

Nmax
i

)
, (1)

where V 0
i denotes the maximum velocity (speed limit) and Nmax

i the capacity,
i.e. the maximum possible number of vehicles on route i. With Ai = V 0

i /Li and
Bi = V 0

i /(Nmax
i Li), the inverse travel time then obeys the relationship

1/T (Ni) = Ai − BiNi, (2)

which is linearly decreasing with the road occupancy Ni. Other monotonously falling
relationships Vi(Ni) would make the expression for the inverse travel times non-
linear, but they would probably not lead to qualitatively different conclusions.

The user equilibrium of equal travel times is found for a fraction

N e
1

N
=

B2

B1 + B2
+

1
N

A1 − A2

B1 + B2
(3)

of persons choosing route 1. In contrast, the system optimum corresponds to the
maximum of the overall inverse travel times N1/T1(N1) + N2/T2(N2) and is found
for the fraction

No
1

N
=

B2

B1 + B2
+

1
2N

A1 − A2

B1 + B2
(4)

of 1-decisions. The difference between both fractions vanishes in the limit N → ∞.
Therefore, only experiments with a few players allow one to find out whether the
test persons adapt to the user equilibrium or to the system optimum. We will see
that both cases have completely different dynamical implications: While the most
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successful strategy to establish the user equilibrium is to stick to the same decision
in subsequent iterations [27, 65, 66], the system optimum can only be reached by a
time-dependent strategy (at least, if no participant is ready to pay for the profits
of others).

Note that alternative routes can reach comparable travel times only when the
total number N of vehicles is large enough to fulfil the relationships P1(N) <

P2(0) = A2 and P2(N) < P1(0) = A1. Our route choice game will address this traffic
regime and additionally assume N ≤ Nmax

i . The case Ni = Nmax
i corresponds to a

complete gridlock on route i.
Finally, it may be interesting to connect the previous quantities with the vehicle

densities ρi and the traffic flows Qi: If route i consists of Ii lanes, the relation with
the average vehicle density is ρi(Ni) = Ni/(IiLi), and the relation with the traffic
flow is Qi(Ni) = ρiVi(Ni) = Ni/[IiTi(Ni)].

In the following, we will linearly transform the inverse travel time 1/Ti(Ni) in
order to define the so-called payoff

Pi(Ni) = Ci − DiNi (5)

for choosing route i. The payoff parameters Ci and Di depend on the parameters
Ai, Bi, and N , but will be taken as constant. We have scaled the parameters so
that we have the payoff Pi(N e

i ) = 0 (zero payoff points) in the user equilibrium and
the payoff N1P1(No

1 ) + N2P2(N − No
1 ) = 100 N (an average of 100 payoff points)

in the system optimum. This serves to reach generalizable results and to provide a
better orientation to the test persons.

Note that the investigation of social (multi-person) games with linearly falling
payoffs is not new [33]. For example, Schelling [62] has discussed situations with
“conditional externality,” where the outcome of a decision depends on the indepen-
dent decisions of potentially many others [62]. Pigou has addressed this problem,
which has been recently focused on by Schreckenberg and Selten’s project SUR-
VIVE [7, 65, 66] and others [8, 41, 58].

The route choice game is a special congestion game [22, 47, 60]. More precisely
speaking, it is a multi-stage symmetrical N -person single commodity congestion
game [68]. Congestion games belong to the class of “potential games” [48], for
which many theorems are available. For example, it is known that there always
exists a Wardrop equilibrium [71] with essentially unique Nash flows [4]. This is
characterized by the property that no individual driver can decrease his or her
travel time by a different route choice. If there are several alternative routes from
a given origin to a given destination, the travel times on all used alternative routes
in the Wardrop equilibrium are the same, while roads with longer travel times
are not used. However, the Wardrop equilibrium as the expected outcome of self-
ish routing does not generally reach the system optimum, i.e. minimize the total
travel times. Nash flows are often inefficient, and selfish behavior implies the pos-
sibility of decreased network performance.b This is particularly pronounced for

bFor more details, see the work by T. Roughgarden.
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the Braess paradox [10, 61], according to which additional streets may sometimes
increase the overall travel time and reduce the throughput of a road network. The
reason for this is the possible existence of badly performing Nash equilibria, in
which no single person can improve his or her payoff by changing the decision
behavior.

In fact, recent laboratory experiments indicate that, in a “day-to-day route
choice scenario” based on selfish routing, the distribution of individuals over the
alternative routes is fluctuating around the Wardrop equilibrium [27, 63]. Additional
conclusions from the laboratory experiments by Schreckenberg, Selten et al. are as
follows [65, 66]:

• Most people, who change their decision frequently, respond to their experience
on the previous day (i.e. in the last iteration).

• There are only a few different behavioral patterns: direct responders (44%), con-
trarian responders (14%), and conservative persons, who do not respond to the
previous outcome.

• It does not pay off to react to travel time information in a sensitive way, as
conservative test persons reach the smallest travel times (the largest payoffs) on
average.

• People’s reactions to short-term travel forecasts can invalidate these. Neverthe-
less, travel time information helps to match the Wardrop equilibrium, so that
excess travel times due to coordination problems are reduced.

A closer experimental analysis based on longer time series (i.e. more iterations) for
smaller groups of test persons reveals a more detailed picture [26]:

• Individuals do not only show an adaptive behavior to the travel times on the
previous day, but also change their response pattern in time [26, 34].

• In the course of time, one finds a differentiation process which leads to the devel-
opment of characteristic, individual response patterns, which tend to be almost
deterministic (in contrast to mixed strategies).

• While some test persons respond to small differences in travel times, others only
react to medium-sized deviations, still others people respond to large deviations,
etc. In this way, overreactions of the group to deviations from the Wardrop equi-
librium are considerably reduced.

Note that the differentiation of individual behaviors is a way to resolve the coor-
dination problem to match the Wardrop equilibrium exactly, i.e. which participant
should change his or her decision in the next iteration in order to compensate for
a deviation from it. This implies that the fractions of specific behavioral response
patterns should depend on the parameters of the payoff function. A certain frac-
tion of “stayers,” who do not respond to travel time information, can improve the
coordination in the group, i.e. the overall performance. However, stayers can also
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prevent the establishment of a system optimum, if alternating reciprocity is needed,
see Eq. (14).

3. Classification of Symmetrical 2 × 2 Games

In contrast to previous laboratory experiments, we have studied the route choice
game not only with a very high number of repetitions, but also with a small number
N ∈ {2, 4} of test persons, in order to see whether the system optimum or the
Wardrop equilibrium is established. Therefore, let us shortly discuss how the two-
person game relates to previous game-theoretical studies.

Iterated symmetrical two-person games have been intensively studied [12, 18],
including Stag Hunt, the Battle of the Sexes, or the Chicken Game (see Fig. 2).
They can all be represented by a payoff matrix of the form P = (Pij), where Pij

is the success (“payoff”) of person 1 in a one-shot game when choosing strategy
i ∈ {1, 2} and meeting strategy j ∈ {1, 2}. The respective payoffs of the second
person are given by the symmetrical values Pji. Figure 2 shows a systematics of the
previously mentioned and other kinds of symmetrical two-person games [21]. The
relations

P21 > P11 > P22 > P12, (6)

for example, define a Prisoner’s Dilemma. In this paper, however, we will mainly
focus on the two-person route choice game defined by the conditions

P12 > P11 > P21 > P22 (7)

(see Fig. 3). Despite some common properties, this game differs from the minor-
ity game [16, 39, 43] or El Farol bar problem [1] with P12, P21 > P11, P22, as a
minority decision for alternative 2 is less profitable than a majority decision for

−200

21P

−200 P12
0

Prisoner´s
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HarmonyStag Hunt Route Choice
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Coordination Deadlock

Chicken
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−200Strategy 2

Strategy 1
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Notation:

Fig. 2. Classification of symmetrical 2 × 2 games according to their payoffs Pij . Two payoff
values have been kept constant as payoffs may be linearly transformed and the two strategies of
the one-shot game renumbered. Our choice of P11 = 0 and P22 = −200 was made to define a
payoff of 0 points in the user equilibrium and an average payoff of 100 in the system optimum of
our investigated route choice game with P12 = 300 and P21 = −100.
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Fig. 3. Payoff specifications of the symmetrical 2×2 games investigated in this paper. (a) General
payoff matrix underlying the classification scheme of Fig. 2. (b) and (c) Two variants of the
Prisoner’s Dilemma. (d) Route choice game with a strategical conflict between the user equilibrium
and the system optimum.

alternative 1. Although oscillatory behavior has been found in the minority game
as well [9, 15, 16, 36, 43], an interesting feature of the route choice experiments dis-
cussed in the following is the regularity and phase-coordination (coherence) of the
oscillations.

The two-person route choice game fits well into the classification scheme of
symmetrical 2 × 2 games. In Rapoport and Guyer’s taxonomy of 2 × 2 games [57],
the two-person route choice game appears on page 211 as game number 7 together
with four other games with strongly stable equilibria. Since then, the game has
almost been forgotten and did not have a commonly known interpretation or name.
Therefore, we suggest naming it the two-person “route choice game.” Its place in
the extended Eriksson–Lindgren scheme of symmetrical 2 × 2 games is graphically
illustrated in Fig. 2.

According to the game-theoretical literature, there are 12 ordinally distinct,
symmetric 2 × 2 games [57], but after excluding strategically trivial games in the
sense of having equilibrium points that are uniquely Pareto-efficient, there remain
four archetypical 2 × 2 games: the Prisoner’s Dilemma, the Battle of the Sexes,
Chicken (Hawk-Dove), and Leader [56]. However, this conclusion is only correct
if the four payoff values Pij are specified by the four values {1, 2, 3, 4}. Taking
different values would lead to a different conclusion: If we name subscripts so that
P11 > P22, a strategical conflict between a user equilibrium and the system optimum
results when

P12 + P21 > 2P11. (8)

Our conjecture is that players tend to develop alternating forms of reciprocity if this
condition is fulfilled, while symmetric reciprocity is found otherwise. This has the
following implications (see Fig. 2):

• If the 2 × 2 games Stag Hunt, Harmony, or Pure Coordination are repeated
frequently enough, we always expect a symmetrical form of cooperation.

• For Leader and the Battle of the Sexes, we expect the establishment of asym-
metric reciprocity, as has been found by Browning and Colman with a computer
simulation based on a genetic algorithm incorporating mutation and crossing-
over [11].
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• For the games Route Choice, Deadlock, Chicken, and Prisoner’s Dilemma both,
symmetric (simultaneous) and asymmetric (alternating) forms of cooperation are
possible, depending on whether condition (8) is fulfilled or not. Note that this
condition cannot be met for some games, if one is restricted to ordinal payoff
values Pij ∈ {1, 2, 3, 4} only. Therefore, this interesting problem has been largely
neglected in the past (with a few exceptions, e.g. Ref. 51). In particular, con-
vincing experimental evidence of alternating reciprocity is missing. The following
sections of this paper will, therefore, not only propose a simulation model, but
also focus on an experimental study of this problem, which promises interesting
new results.

4. Experimental Results

Altogether we have carried out more than 80 route choice experiments with different
experimental setups, all with different participants. In the 24 two-person (12 four-
person) experiments evaluated here (see Figs. 4–15), test persons were instructed to
choose between two possible routes between the same origin and destination. They

2

1

0
1
2

-5000

0

 5000

 10000

 15000

 20000

0  50  100  150  200  250  300

Participant 1
Participant 2

1

1 D
ec

is
io

ns

1
N

2

2

P
ar

tic
ip

an
t

C
um

m
ul

at
iv

e 
P

ay
of

f

Iteration t

Fig. 4. Representative example for the emergence of coherent oscillations in a two-person route
choice experiment with the parameters specified in Fig. 3(d). Top: Decisions of both participants
over 300 iterations. Center: Number N1(t) of 1-decisions over time t. Note that N1 = 1 corresponds
to the system optimum, while N1 = 2 corresponds to the user equilibrium of the one-shot game.
Bottom: Cumulative payoff of both players in the course of time t (i.e. as a function of the number
of iterations). Once the coherent oscillatory cooperation is established (t > 220), both individuals
have high payoff gains on average.
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Fig. 5. Representative example for a two-person route choice experiment, in which no alternating
cooperation was established. Due to the small changing frequency of participant 1, there were not
enough cooperative episodes that could have initiated coherent oscillations. Top: Decisions of both
participants over 300 iterations. Center: Number N1(t) of 1-decisions over time t. Bottom: The
cumulative payoff of both players in the course of time t shows that the individual with the smaller
changing frequency has higher profits.

knew that route 1 corresponds to a “freeway” (which may be fast or congested),
while route 2 represents an alternative route (a “side road”). Test persons were
also informed that, if two [three] participants chose route 1, everyone would receive
0 points, while if half of the participants chose route 1, they would receive the
maximum average amount of 100 points, but 1-choosers would profit at the cost
of 2-choosers. Finally, participants were told that everyone could reach an aver-
age of 100 points per round with variable, situation-dependent decisions, and that
the (additional) individual payment after the experiment would depend on their
cumulative payoff points reached in at least 300 rounds (100 points = 0.01 EUR).

Let us first focus on the two-person route-choice game with the payoffs P11 =
P1(2) = 0, P12 = P1(1) = 300, P21 = P2(1) = −100, and P22 = P2(2) = −200
(see Fig. 3(d)), corresponding to C1 = 600, D1 = 300, C2 = 0, and D2 = 100. For
this choice of parameters, the best individual payoff in each iteration is obtained by
choosing route 1 (the “freeway”) and have the co-player(s) choose route 2. Choosing
route 1 is the dominant strategy of the one-shot game, and players are tempted to
use it. This produces an initial tendency towards the “strongly stable” user equilib-
rium [57] with 0 points for everyone. However, this decision behavior is not Pareto
efficient in the repeated game. Therefore, after many iterations, the players often
learn to establish the Pareto optimum of the multi-stage supergame by selecting
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Fig. 6. Frequency distributions of the average payoffs of the 48 players participating in our 24
two-person route choice experiments. Left: Distribution during the first 50 iterations. Right: Dis-
tribution between iterations 250 and 300. The initial distribution with a maximum close to 0
points (left) indicates a tendency towards the user equilibrium corresponding to the dominant
strategy of the one-shot game. However, after many iterations, many individuals learn to establish
the system optimum with a payoff of 100 points (right).

route 1 in turns (see Fig. 4). As a consequence, the experimental payoff distribu-
tion shows a maximum close to 0 points in the beginning and a peak at 100 points
after many iterations (see Fig. 6), which clearly confirms that the choice behavior
of test persons tends to change over time. Nevertheless, in 7 out of 24 two-person
experiments, persistent cooperation did not emerge during the experiment. Later
on, we will identify reasons for this.

4.1. Emergence of cooperation and punishment

In order to reach the system optimum of (−100+300)/2 = 100 points per iteration,
one individual has to leave the freeway for one iteration, which yields a reduced
payoff of −100 in favor of a high payoff of +300 for the other individual. To be
profitable also for the first individual, the other one should reciprocate this “offer”
by switching to route 2, while the first individual returns to route 1. Establish-
ing this oscillatory cooperative behavior yields 100 extra points on average. If the
other individual is not cooperative, both will be back to the user equilibrium of
0 points only, and the uncooperative individual has temporarily profited from the
offer by the other individual. This makes “offers” for cooperation and, therefore,
the establishment of the system optimum unlikely.

Hence, the innovation of oscillatory behavior requires intentional or random
changes (“trial-and-error behavior”). Moreover, the consideration of multi-period
decisions is helpful. Instead of just two one-stage (i.e. one-period) alternative deci-
sions 1 and 2, there are 2n different n-stage (n-period) decisions. Such multi-
stage strategies can be used to define higher-order games and particular kinds
of supergame strategies. In the two-person second-order route choice game, for
example, an encounter of the two-stage decision 12 with 21 establishes the system
optimum and yields equal payoffs for everyone (see Fig. 8). Such an optimal and
fair solution is not possible for one-stage decisions. Yet, the encounter of 12 with
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Fig. 7. Representative example for a two-person route choice experiment, in which participant 1
leaves the pattern of oscillatory cooperation temporarily in order to make additional profits. Note
that participant 2 does not “punish” this selfish behavior, but continues to take routes in an
alternating way. Top: Decisions of both participants over 300 iterations. Center: Number N1(t) of
1-decisions over time t. Bottom: Cumulative payoff of both players as a function of the number
of iterations. The different slopes indicate an unfair outcome despite the high average payoffs of
both players.

21 (“cooperative episode”) is not a Nash equilibrium of the two-stage game, as an
individual can increase his or her own payoff by selecting 11 (see Fig. 8). Probably
for this reason, the first cooperative episodes in a repeated route choice game (i.e.
encounters of 12-decisions with 21-decisions in two subsequent iterations) do often
not persist (see Fig. 9). Another possible reason is that cooperative episodes may
be overlooked. This problem, however, can be reduced by a feedback signal that
indicates when the system optimum has been reached. For example, we have exper-
imented with a green background color. In this setup, a cooperative episode could
be recognized by a green background that appeared in two successive iterations
together with two different payoff values.

The strategy of taking route 1 does not only dominate on the first day (in the
first iteration). Even if a cooperative oscillatory behavior has been established, there
is a temptation to leave this state, i.e. to choose route 1 several times, as this yields
more than 100 points on average for the uncooperative individual at the cost of the
participant continuing an alternating choice behavior (see Figs. 7 and 8). That is,
the conditional changing probability pl(2|1, N1 = 1; t) of individuals l from route 1
to route 2, when the system optimum in the previous iteration was established (i.e.
N1 = 1) tends to be small initially. However, oscillatory cooperation of period
2 needs pl(2|1, N1 = 1; t) = 1. The required transition in the decision behavior
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matrix P = (Pij) of the one-shot 2 × 2 route choice game. Right: Payoff matrix (P
(2)
(i1i2),(j1j2)

) =

(Pi1j1 + Pi2j2 ) of the second-order route choice game defined by two-stage decisions (right). The
analysis of the one-shot game (left) predicts that the user equilibrium (with both persons choosing
route 1) will establish and that no single player could increase the payoff by another decision. For
two-period decisions (right), the system optimum (strategy 12 meeting strategy 21) corresponds
to a fair solution, but one person can increase the payoff at the cost of the other (see arrow 1), if
the game is repeated. A change of the other person’s decision can reduce losses and punish this
egoistic behavior (arrow 2), which is likely to establish the user equilibrium with payoff 0. In order
to leave this state again in favor of the system optimum, one person will have to make an “offer”
at the cost of a reduced payoff (arrow 3). This offer may be due to a random or intentional change
of decision. If the other person reciprocates the offer (arrow 4), the system optimum is established
again. The time-averaged payoff of this cycle lies below the system optimum.
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established, given that cooperation occured during the duration of the game as in 17 out of 24
two-person experiments. The experimental data are well approximated by the logistic curve (9)
with the fit parameters c2 = 3.4 and d2 = 0.17.

can actually be observed in our experimental data (see Fig. 10, left). With this
transition, the average frequency of 1-decisions goes down to 1/2 (see Fig. 10, right).
Note, however, that alternating reciprocity does not necessarily require oscillations
of period 2. Longer periods are possible as well (see Fig. 11), but have occured only
in a few cases (namely, 3 out of 24 cases).
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of 50 iterations. The transition from initially small values to 1 (for t > 240) is characteristic
and illustrates the learning of cooperative behavior. In this particular group (cf. Fig. 4) the val-
ues started even at zero, after a transient time period of t < 60. Right: Proportion Pl(1, t) of
1-decisions of both participants l in the two-person route choice experiment displayed in Fig. 4.
While the initial proportion is often close to 1 (the user equilibrium), it reaches the value 1/2

when persistent oscillatory cooperation (the system optimum) is established.
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Fig. 11. Representative example for a two-person route choice experiment with phase-coordinated
oscillations of long (and varying) time periods larger than 2. Top: Decisions of both participants
over 300 iterations. Center: Number N1(t) of 1-decisions over time t. Bottom: Cumulative payoff of
both players as a function of the number of iterations. The sawtooth-like increase in the cumulative
payoff indicates gains by phase-coordinated alternations with long oscillation periods.

How does the transition to oscillatory cooperation come about? The establish-
ment of alternating reciprocity can be supported by a suitable punishment strategy:
If the other player should have selected route 2, but has chosen route 1 instead, he
or she can be punished by changing to route 1 as well, since this causes an average
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payoff of less than 100 points for the other person (see Fig. 8). Repeated punishment
of uncooperative behavior can, therefore, reinforce cooperative oscillatory behavior.
However, the establishment of oscillations also requires costly “offers” by switching
to route 2, which only pay back in the case of alternating reciprocity. It does not
matter whether these “offers” are intentional or due to exploratory trial-and-error
behavior.

Due to punishment strategies and similar reasons, persistent cooperation is often
established after a number n of cooperative episodes. In the 17 of our 24 two-
person experiments in which persistent cooperation was established, the cumulative
distribution of required cooperative episodes could be mathematically described by
the logistic curve

FN (n) = 1/[1 + cN exp(−dNn)] (9)

(see Fig. 9). Note that, while we expect that this relationship is generally valid, the
fit parameters cN and dN may depend on factors like the distribution of participant
intelligence, as oscillatory behavior is apparently difficult to establish (see below).

4.2. Preconditions for cooperation

Let us focus on the time period before persistent oscillatory cooperation is estab-
lished and denote the occurrence probability that individual l chooses alternative
i ∈ {1, 2} by Pl(i). The quantity pl(j|i) shall represent the conditional probability
of choosing j in the next iteration, if i was chosen by person l in the present one.
Assuming stationarity for reasons of simplicity, we expect the relationship

pl(2|1)Pl(1) = pl(1|2)Pl(2), (10)

i.e. the (unconditional) occurrence probability Pl(1, 2) = pl(2|1)Pl(1) of having
alternative 1 in one iteration and 2 in the next agrees with the joint occurrence
probability Pl(2, 1) = pl(1|2)Pl(2) of finding the opposite sequence 21 of decisions:

Pl(1, 2) = Pl(2, 1). (11)

Moreover, if rl denotes the average changing frequency of person l until persistent
cooperation is established, we have the relation

rl = Pl(1, 2) + Pl(2, 1). (12)

Therefore, the probability that all N players simultaneously change their decision
from one iteration to the next is

∏N
l=1 rl. Note that there are 2N such realizations

of N decision changes 12 or 21, which have all the same occurrence probability
because of Eq. (11). Among these, only the ones where N/2 players change from
1 to 2 and the other N/2 participants change from 2 to 1 establish cooperative
episodes, given that the system optimum corresponds to an equal distribution over
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both alternatives. Considering that the number of different possibilities of selecting
N/2 out of N persons is given by the binomial coefficient, the occurrence probability
of cooperative events is

Pc =
1

2N

(
N

N/2

) N∏
l=1

rl (13)

(at least in the ensemble average). Since the expected time period T until the
cooperative state incidentally occurs equals the inverse of Pc, we finally find the
formula

T =
1
Pc

= 2N (N/2)!2

N !

N∏
l=1

1
rl

. (14)

This formula is well confirmed by our two-person experiments (see Fig. 12). It
gives the lower bound for the expected value of the minimum number of required
iterations until persistent cooperation can spontaneously emerge (if already the first
cooperative episode is continued forever).

Obviously, the occurrence of oscillatory cooperation is expected to take much
longer for a large number N of participants. This tendency is confirmed by our four-
person experiments compared to our two-person experiments. It is also in agreement
with intuition, as coordination of more people is more difficult. (Note that mean
first passage or transition times in statistical phyisics tend to grow exponentially
in the number N of particles as well.)

Besides the number N of participants, another critical factor for the coopera-
tion probability are the changing frequencies rl; they are needed for the exploration
of innovative strategies, coordination and cooperation. Although the instruction of
test persons would have allowed them to conclude that taking turns would be a
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Fig. 12. Comparison of the required number of cooperative episodes y with the expected num-
ber x of cooperative episodes (approximated as occurrence time of persistent cooperation, divided
by the expected time interval T until a cooperative episode occurs by chance). Note that the data
points support the relationship y = x and, thereby, formula (14).
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good strategy, the changing frequencies rl of some individuals was so small that
cooperation within the duration of the respective experiment did not occur, in
accordance with formula (14). The unwillingness of some individuals to vary their
decisions is sometimes called “conservative” [7, 65, 66] or “inertial behavior” [9].
Note that, if a player never reciprocates “offers” by other players, this may dis-
courage further “offers” and reduce the changing frequency of the other player(s)
as well (see the decisions 50 through 150 of player 2 in Fig. 4).

Our experimental time series show that most individuals initially did not know a
periodic decision behavior would allow them to establish the system optimum. This
indicates that the required depth of strategic reasoning [19] and the related com-
plexity of the game for an average person are already quite high, so that intelligence
may matter. Compared to control experiments, the hint that the maximum average
payoff of 100 points per round could be reached “by variable, situation-dependent
decisions,” increased the average changing frequency (by 75 percent) and with this
the occurrence frequency of cooperative events. Thereby, it also increased the chance
that persistent cooperation established during the duration of the experiment.

Note that successful cooperation requires not only coordination [9], but also
innovation; in their first route choice game, most test persons discover the oscillatory
cooperation strategy only by chance in accordance with formula (14). The changing
frequency is, therefore, critical for the establishment of innovative strategies; it
determines the exploratory trial-and-error behavior. In contrast, cooperation is easy
when test persons know that the oscillatory strategy is successful; when two teams,
who had successfully cooperated in two-person games, had afterwards to play a
four-person game, cooperation was always and quickly established (see Fig. 13).
In contrast, unexperienced co-players suppressed the establishment of oscillatory
cooperation in four-person route choice games.

4.3. Strategy coefficients

In order to characterize the strategic behavior of individuals and predict their
chances of cooperation, we have introduced some strategy coefficients. For this,
let us introduce the following quantities, which are determined from the iterations
before persistent cooperation is established:

• ck
l = relative frequency of a changed subsequent decision of individual l if the

payoff was negative (k = −), zero (k = 0), or positive (k = +).
• sk

l = relative frequency of individual l to stay with the previous decision if the
payoff was negative (k = −), zero (k = 0), or positive (k = +).

The Yule coefficient

Ql =
c−l s+

l − c+
l s−l

c−l s+
l + c+

l s−l
(15)
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Fig. 13. Experimentally observed decision behavior when two groups involved in two-person route
choice experiments afterwards played a four-person game with C1 = 900, D1 = 300, C2 = 100,
D2 = 100. While oscillations of period 2 emerged in the second group (center), another alternating
pattern corresponding to n-period decisions with n > 2 emerged in the first group (top). Bottom:
After all persons had learnt oscillatory cooperative behavior, the four-person game just required
coordination, but not the invention of a cooperative strategy. Therefore, persistent cooperation was
quickly established (in contrast to four-person experiments with new participants). It is clearly
visible that the test persons continued to apply similar decision strategies (bottom) as in the
previous two-person experiments (top/center).

with −1 ≤ Ql ≤ 1 was used by Schreckenberg, Selten et al. [65] to identify direct
responders with 0.5 < Ql ≈ 1 (who change their decision after a negative payoff
and stay after a positive payoff), and contrarian responders with −0.5 > Ql ≈ −1
(who change their decision after a positive payoff and stay after a negative one). A
random decision behavior would correspond to a value Ql ≈ 0. However, a problem
arises if one of the variables c−l , s+

l , c+
l , or s−l assumes the value 0. Then, we have

Ql ∈ {−1, 1}, independently of the other three values. If two of the variables become
zero, Ql is sometimes even undefined. Moreover, if the values are small, the resulting
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conclusion is not reliable. Therefore, we prefer to use the percentage difference

Sl =
c−l

c−l + sl
l

− c+
l

c+
l + s+

l

(16)

for the assessment of strategies. Again, we have −1 ≤ Sl ≤ 1. Direct responders
correspond to Sl > 0.25 and contrarian responders to Sl < −0.25. For −0.25 ≤
Sl ≤ 0.25, the response to the previous payoff is rather random.

In addition, we have introduced the Z-coefficient

Zl =
c0
l

c0
l + s0

l

, (17)

for which we have 0 ≤ Zl ≤ 1. This coefficient describes the likely response of
individual l to the user equilibrium. Zl = 0 means that individual l does not change
routes, if the user equilibrium was reached. Zl = 1 implies that person l always
changes, while Zl ≈ 0.5 indicates a random response.

Figure 14 shows the result of the two-person route choice experiments (cooper-
ation or not) as a function of S1 and S2, and as a function of Z1 and Z2. Moreover,
Figure 15 displays the result as a function of the average strategy coefficients

Z =
1
N

N∑
l=1

Zl (18)

and

S =
1
N

N∑
l=1

Sl. (19)

Our experimental data indicate that the Z-coefficient is a good indicator for the
establishment of cooperation, while the S-coefficient seems to be rather insignificant
(which also applies to the Yule coefficient).
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Fig. 14. Coefficients Sl and Zl of both participants l in all 24 two-person route choice games. The
values of the S-coefficients (i.e. the individual tendencies towards direct or contrarian responses)
are not very significant for the establishment of persistent cooperation, while large enough values
of the Z-coefficient stand for the emergence of oscillatory cooperation.
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Fig. 15. S- and Z-coefficients averaged over both participants in all 24 two-person route choice
games. The mainly small, but positive values of S indicate a slight tendency towards direct
responses. However, the S-coefficient is barely significant for the emergence of persistent oscil-
lations. A good indicator for their establishment is a sufficiently large Z-value.

5. Multi-Agent Simulation Model

In a first attempt, we have tried to reproduce the observed behavior in our two-
person route choice experiments by game-dynamical equations [28]. We have applied
these to the 2 × 2 route choice game and its corresponding two-, three- and four-
stage higher-order games (see Sec. 4.1). Instead of describing patterns of alternating
cooperation, however, the game dynamical equations predicted a preference for the
dominant strategy of the one-shot game, i.e. a tendency towards choosing route 1.

The reason for this becomes understandable through Fig. 8. Selecting routes 2
and 1 in an alternating way is not a stable strategy, as the other player can get a
higher payoff by choosing two times route 1 rather than responding with 1 and 2.
Selecting route 1 all the time even guarantees that the own payoff is never below the
one by the other player. However, when both players select route 1 and establish the
related user equilibrium, no player can improve his or her payoff in the next itera-
tion by changing the decision. Nevertheless, it is possible to improve the long-term
outcome, if both players change their decisions, and if they do it in a coordinated
way. Note, however, that a strict alternating behavior of period 2 is an optimal
strategy only in infinitely repeated games, while it is unstable to perturbations in
finite games.

It is known that cooperative behavior may be explained by a “shadow of the
future” [2, 3], but it can also be established by a “shadow of the past” [40], i.e.
experience-based learning. This will be the approach of the multi-agent simulation
model proposed in this section. As indicated before, the emergence of phase-
coordinated strategic alternation (rather than a statistically independent appli-
cation of mixed strategies) requires an almost deterministic behavior (see Fig. 16).
Nevertheless, some weak stochasticity is needed for the establishment of asymmet-
ric cooperation, both for the exploration of innovative strategies and for phase
coordination. Therefore, we propose the following reinforcement learning model,
which could be called a generalized win-stay, lose-shift strategy [50, 54].
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Fig. 16. Representative example for a two-person route choice simulation based on our proposed
multi-agent reinforcement learning model with Pmax

av = 100 and Pmin
av = −200. The parameter ν1

l
has been set to 0.25. The other model parameters are specified in the text. Top: Decisions of both
agents over 300 iterations. Center: Number N1(t) of 1-decisions over time t. Bottom: Cumulative
payoff of both agents as a function of the number of iterations. The emergence of oscillatory
cooperation is comparable with the experimental data displayed in Fig. 4.

Let us presuppose that an individual approximately memorizes or has a good
feeling of how well he or she has performed on average in the last nl iterations and
since he or she has last responded with decision j to the situation (i, N1). In our
success- and history-dependent model of individual decision behavior, pl(j|i, N1; t)
denotes agent l’s conditional probability of taking decision j at time t + 1, when i

was selected at time t and N1(t) agents had chosen alternative 1. Assuming that pl

is either 0 or 1, pl(j|i, N1; t) has the meaning of a deterministic response strategy:
pl(j|i, N1; t) = 1 implies that individual l will respond at time t + 1 with the
decision j to the situation (i, N1) at time t.

Our reinforcement learning strategy can be formulated as follows. The response
strategy pl(j|i, N1, t) is switched with probability ql > 0, if the average individual
payoff since the last comparable situation with i(t′) = i(t) and N1(t′) = N1(t)
at time t′ < t is less than the average individual payoff P̄l(t) during the last nl

iterations. In other words, if the time-dependent aspiration level P̄l(t) [40, 54] is
not reached by the agent’s average payoff since his or her last comparable decision,
the individual is assumed to substitute the response strategy pl(j|i, N1; t) by

pl(j|i, N1; t + 1) = 1 − pl(j|i, N1; t) (20)

with probability ql. The replacement of dissatisfactory strategies orients at histor-
ical long-term profits (namely, during the time period [t′, t]). Thereby, it avoids
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short-sighted changes after temporary losses. Moreover, it does not assume a com-
parison of the performance of the actually applied strategy with hypothetical ones
as in most evolutionary models. A readiness for altruistic decisions is also not
required, while exploratory behavior (“trial and error”) is necessary. In order to
reflect this, the decision behavior is randomly switched from pl(j|i, N1; t + 1) to
1 − pl(j|i, N1; t + 1) with probability

νl(t) = max
(

ν0
l , ν1

l

Pmax
av − P̄l(t)

Pmax
av − Pmin

av

)
� 1. (21)

Herein, Pmin
av and Pmax

av denote the minimum and maximum average payoff of all N

agents (simulated players). The parameter ν1
l reflects the mutation frequency for

P̄l(t) = Pmin
av , while the mutation frequency is assumed to be ν0

l ≤ ν1
l when the

time-averaged payoff P̄l reaches the system optimum P̄max
av .

In our simulations, no emergent cooperation is found for ν0
l = ν1

l = 0. ν0
l > 0

or odd values of nl may produce intermittent breakdowns of cooperation. A small,
but finite value of ν1

l is important to find a transition to persistent cooperation.
Therefore, we have used the parameter value ν1

l = 0.25, while the simplest possible
specification has been chosen for the other parameters, namely ν0

l = 0, ql = 1, and
nl = 2.

The initial conditions for the simulation of the route choice game were specified
in accordance with the dominant strategy of the one-shot game, i.e. Pl(1, 0) = 1
(everyone tends to choose the freeway initially), pl(2|1, N1; 0) = 0 (it is not attrac-
tive to change from the freeway to the side road) and pl(1|2, N1; 0) = 1 (it is tempt-
ing to change from the side road to the freeway). Interestingly enough, agents learnt
to acquire the response strategy pl(2|1, N1 = 1; t) = 1 in the course of time, which
established oscillatory cooperation with higher profits (see Figs. 16 and 17).
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Fig. 17. Left: Conditional changing probability pl(2|1, N1 = 1; t) of agent l from route 1 (the
“freeway”) to route 2, when the other agent has chosen route 2, averaged over a time window of
50 iterations. The transition from small values to 1 for the computer simulation displayed in Fig. 16
is characteristic and illustrates the learning of cooperative behavior. Right: Proportion Pl(1, t) of
1-decisions of both participants l in the two-person route choice experiment displayed in Fig. 16.
While the initial proportion is often close to 1 (the user equilibrium), it reaches the value 1/2 when
persistent oscillatory cooperation (the system optimum) is established. The simulation results are
compatible with the essential features of the experimental data (see, for example, Fig. 10).
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Fig. 18. Left: Comparison of the required number of cooperative episodes with the expected
number of cooperative episodes in our multi-agent simulation of decisions in the route choice
game. Note that the data points support formula (14). Right: Cumulative distribution of required
cooperative episodes until persistent cooperation is established in our two-person route choice
simulations, using the simplest specification of model parameters (not calibrated). The simulation
data are well approximated by the logistic curve (9) with the fit parameters c2 = 7.9 and d2 = 0.41.

Note that the above described reinforcement learning model [40] responds only
to the own previous experience [13]. Despite its simplicity (e.g. the neglect of more
powerful, but probably less realistic k-move memories [11]), our “multi-agent”
simulations reproduce the emergence of asymmetric reciprocity of two or more
players, if an oscillatory strategy of period 2 can establish the system optimum.
This raises the question why previous experiments of the N -person route choice
game [27,63] have observed a clear tendency towards the Wardrop equilibrium [71]
with P1(N1) = P2(N2) rather than phase-coordinated oscillations? It turns out
that the payoff values must be suitably chosen [see Eq. (8)] and that several hun-
dred repetitions are needed. In fact, the expected time interval T until a cooperative
episode among N = N1+N2 participants occurs in our simulations by chance is well
described by formula (14); see Fig. 18. The empirically observed transition in the
decision behavior displayed in Fig. 10 is qualitatively reproduced by our computer
simulations as well (see Fig. 17). The same applies to the frequency distribution
of the average payoff values (compare Fig. 19 with Fig. 6) or to the number of
expected and required cooperative episodes (compare Fig. 18 with Figs. 9 and 12).

5.1. Simultaneous and alternating cooperation in the Prisoner’s

Dilemma

Let us finally simulate the dynamic behavior in the two different variants of the
Prisoner’s Dilemma indicated in Figs. 3(b) and (c) with the above experience-based
reinforcement learning model. Again, we will assume P11 = 0 and P22 = −200.
According to Eq. (8), a simultaneous, symmetrical form of cooperation is expected
for P12 = −300 and P21 = 100, while an alternating, asymmetric cooperation is
expected for P12 = −300 and P21 = 500. Figure 20 shows simulation results for the
two different cases of the Prisoner’s Dilemma and confirms the two predicted forms
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Fig. 19. Frequency distributions of the average payoffs in our computer simulations of the two-
person route choice game. Left: Distribution during the first 50 iterations. Right: Distribution
between iterations 250 and 300. Our simulation results are compatible with the experimental data
displayed in Fig. 6.
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Fig. 20. Representative examples for computer simulations of the two different forms of the

Prisoner’s Dilemma specified in Figs. 3(b) and (c). The parameter ν1
l has been set to 0.25, while

the other model parameters are specified in the text. Top: Emergence of simultaneous, symmetrical
cooperation, where decision 2 corresponds to defection and decision 1 to cooperation. The system
optimum corresponds to Pmax

av = 0 payoff points, and the minimum payoff to Pmin
av = −200.

Bottom: Emergence of alternating, asymmetric cooperation with Pmax
av = 100 and Pmin

av = −200.
Left: Time series of the agents’ decisions and the number N1(t) of 1-decisions. Right: Cumulative
payoffs as a function of time t.

of cooperation. Again, we varied only the parameter ν1
l , while we chose the simplest

possible specification of the other parameters ν0
l = 0, ql = 1, and nl = 2. The

initial conditions were specified in accordance with the expected non-cooperative
outcome of the one-shot game, i.e. Pl(1, 0) = 0 (everyone defects in the beginning),
pl(2|2, N1; 0) = 0 (it is tempting to continue defecting), pl(1|1, N1 = 1; 0) = 0 (it is
unfavorable to be the only cooperative player), and pl(1|1, N1 = 2; 0) = 1 (it is good
to continue cooperating, if the other player cooperates). In the course of time, agents
learn to acquire the response strategy pl(2|2, N1 = 0; t) = 0 when simultaneous
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cooperation evolves, but pl(2|2, N1 = 1; t) = 0 when alternating cooperation is
established.

6. Summary, Discussion, and Outlook

In this paper, we have investigated the N -person day-to-day route-choice game.
This special congestion game has not been thoroughly studied before in the case
of small groups, where the system optimum can considerably differ from the user
equilibrium. The two-person route choice game gives a meaning to a previously
uncommon repeated symmetrical 2× 2 game and shows a transition from the dom-
inating strategy of the one-shot game to coherent oscillations, if P12 + P21 > 2P11.
However, a detailed analysis of laboratory experiments with humans reveals that the
establishment of this phase-coordinated alternating reciprocity, which is expected
to occur in other 2 × 2 games as well, is quite complex. It needs either strategic
experience or the invention of a suitable strategy. Such an innovation is driven by
the potential gains in the average payoffs of all participants and seems to be based
on exploratory trial-and-error behavior. If the changing frequency of one or sev-
eral players is too low, no cooperation is established in a long time. Moreover, the
emergence of cooperation requires certain kinds of strategies, which can be char-
acterized by the Z-coefficient (18). These strategies can be acquired by means of
reinforcement learning, i.e. by keeping response patterns which have turned out to
be better than average, while worse response patterns are being replaced. The pun-
ishment of uncooperative behavior can help to enforce cooperation. Note, however,
that punishment in groups of N > 2 persons is difficult, as it is hard to target the
uncooperative person, and punishment affects everyone. Nevertheless, computer
simulations and additional experiments indicate that oscillatory cooperation can
still emerge in route choice games with more than two players after a long time
period (rarely within 300 iterations) (see Fig. 21).

Altogether, spontaneous cooperation takes a long time. It is, therefore, sensitive
to changing conditions reflected by time-dependent payoff parameters. As a con-
sequence, emergent cooperation is unlikely to appear in real traffic systems. This
is the reason why the Wardrop equilibrium tends to occur. However, cooperation
could be rapidly established by means of advanced traveller information systems
(ATIS) [8, 14, 30, 37, 41, 63, 70, 73], which would avoid the slow learning process
described by Eq. (14). Moreover, while we do not recommend conventional con-
gestion charges, a charge for unfair usage patterns would support the compliance
with individual route choice recommendations. It would supplement the inefficient
individual punishment mechanism.

Different road pricing schemes have been proposed, each of which has its own
advantages and disadvantages or side effects. Congestion charges, for example, could
discourage the taking of congested routes, which is actually required to reach mini-
mum average travel times. Conventional tolls and road pricing may reduce the trip
frequency due to budget constraints, which potentially interferes with economic
growth and fair chances for everyone’s mobility.
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Fig. 21. Emergence of phase-coordinated oscillatory behavior in the four-person route choice
game with the parameters specified in Fig. 13. Top: Experimental data of the decisions of four
unexperienced participants over 250 iterations. Bottom: Computer simulation with the reinforc-
ment learning model.

In order to activate capacity reserves, we therefore propose an automated route
guidance system based on the following principles. After specification of their des-
tination, drivers should get individual (and, on average, fair) route choice recom-
mendations in agreement with the traffic situation and the route choice proportions
required to reach the system optimum. If an individual selects a faster route instead
of the recommended route that should be used, he/she will have to pay an amount
proportional to the decrease in the overall inverse travel time compared to the
system optimum. Moreover, drivers not in a hurry should be encouraged to take
the slower route i by receiving the amount of money corresponding to the related
increase in the overall inverse travel time. Altogether, such an ATIS could support
the system optimum while allowing for some flexibility in route choice. Moreover,
the fair usage pattern would be cost-neutral for everyone, i.e. traffic flows of poten-
tial economic relevance would not be suppressed by extra costs.
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In systems with many similar routing decisions, a Pareto optimum characterized
by asymmetric alternating cooperation may even emerge spontaneously. This could
help to enhance the routing in data networks [72] and generally to resolve Braess-
like paradoxes in networks [17].

Finally, it cannot be emphasized enough that taking turns is a promising strat-
egy to distribute scarce resources in a fair and optimal way. It could be applied
to a huge number of real-life situations due to the relevance for many strategical
conflicts, including Leader, the Battle of the Sexes, and variants of Route Choice,
Deadlock, Chicken, and the Prisoner’s Dilemma. The same applies to their N -person
generalizations, in particular social dilemmas [23, 25, 40]. It will also be interesting
to find out whether and where metabolic pathways, biological supply networks, or
information flows in neuronal and immune systems use alternating strategies to
avoid the wasting of costly resources.
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